

US009267136B2

(12) United States Patent

Collard et al.

(10) Patent No.: US 9,267,136 B2 (45) Date of Patent: Feb. 23, 2016

(54)	TREATMENT OF PANCREATIC
	DEVELOPMENTAL GENE RELATED
	DISEASES BY INHIBITION OF NATURAL
	ANTISENSE TRANSCRIPT TO A
	PANCREATIC DEVELOPMENTAL GENE

- (71) Applicant: CuRNA, Inc., Miami, FL (US)
- (72) Inventors: **Joseph Collard**, Delray Beach, FL (US); **Olga Khorkova Sherman**, Tequesta, FL

IS)

- (73) Assignee: CuRNA, Inc., Miami, FL (US)
- (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

- (21) Appl. No.: 14/534,323
- (22) Filed: Nov. 6, 2014

(65) **Prior Publication Data**

US 2015/0057338 A1 Feb. 26, 2015

Related U.S. Application Data

- (62) Division of application No. 13/520,496, filed as application No. PCT/US2011/020321 on Jan. 6, 2011, now Pat. No. 8,912,157.
- (60) Provisional application No. 61/323,027, filed on Apr. 12, 2010, provisional application No. 61/297,847, filed on Jan. 25, 2010, provisional application No. 61/297,863, filed on Jan. 25, 2010, provisional application No. 61/294,129, filed on Jan. 12, 2010, provisional application No. 61/292,508, filed on Jan. 6, 2010.
- (51) Int. Cl. C07H 21/04 (2006.01) C12N 15/113 (2010.01) A61K 31/7088 (2006.01) C12Q 1/68 (2006.01)
- (52) **U.S. CI.** CPC *C12N 15/113* (2013.01); *A61K 31/7088* (2013.01); *C12Q 1/6813* (2013.01); *C12N* 2310/11 (2013.01)
- (58) Field of Classification Search
 None
 See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

4,683,195 A	7/1987	Mullis et al.
4,683,202 A	7/1987	Mullis
4,754,065 A	6/1988	Levenson et al.
4,800,159 A	1/1989	Mullis et al.
5,034,506 A	7/1991	Summerton et al.
5,138,045 A	8/1992	Cook et al.
5,218,105 A	6/1993	Cook et al.
5,288,512 A	2/1994	Seiden
5,288,514 A	2/1994	Ellman
5,319,080 A	6/1994	Leumann
5,393,878 A	2/1995	Leumann

5,432,272 A	7/1995	Benner et al.
5,457,189 A	10/1995	Crooke et al.
5,459,255 A	10/1995	Cook et al.
5,474,796 A	12/1995	Brennan
5,491,084 A	2/1996	Chalfie et al.
5,506,337 A	4/1996	Summerton et al.
5,519,134 A	5/1996	Acevedo et al.
5,525,735 A	6/1996	Gallop et al.
5,539,083 A	7/1996	Cook et al.
5,549,974 A	8/1996	Holmes
5,569,588 A	10/1996	Ashby et al.
5,576,302 A	11/1996	Cook et al.
5,593,853 A	1/1997	Chen et al.
5,605,662 A	2/1997	Heller et al.
5,661,134 A	8/1997	Cook et al.
5,708,161 A	1/1998	Reese
5,739,119 A	4/1998	Galli et al.
5,739,311 A	4/1998	Lackey et al.
5,756,710 A	5/1998	Stein et al.
5,849,902 A	12/1998	Arrow et al.
5,891,725 A	4/1999	Soreq et al.
5,902,880 A	5/1999	Thompson
5,908,779 A	6/1999	Carmichael et al.
5,965,721 A	10/1999	Cook et al.
5,985,663 A	11/1999	Bennett et al.
6,005,095 A	12/1999	Capaccioli et al.
6,013,639 A	1/2000	Peyman et al.
6,013,786 A	1/2000	Chen et al.
6,034,233 A	3/2000	Ecker et al.
6,100,090 A	8/2000	Monia et al.
6,140,492 A	10/2000	Morelli et al.
6,147,200 A	11/2000	Manoharan et al.
6,165,712 A	12/2000	Foulkes et al.
6,165,990 A	12/2000	Singh et al.
6,175,409 B1	1/2001	Nielsen et al.
6,221,587 B1	4/2001	Ecker et al.
6,239,265 B1	5/2001	Cook
6,242,589 B1	6/2001	Cook et al.
6,268,490 B1	7/2001	Imanishi et al.
6,303,374 B1	10/2001	Zhang et al.
6,307,040 B1	10/2001	Cook et al.
, , , ==		

(Continued)

FOREIGN PATENT DOCUMENTS

CA	2686933	4/2008
EP	335451 A3	3/1988
	(Cont	inued)

OTHER PUBLICATIONS

Ausubel, Current Protocols in Molecular Biology vol. 1, 1994, 6.0. 1—6.4.10.

(Continued)

Primary Examiner — Kimberly Chong
(74) Attorney, Agent, or Firm — CuRNA, Inc.; Monte R.
Browder

(57) ABSTRACT

The present invention relates to antisense oligonucleotides that modulate the expression of and/or function of a Pancreatic Developmental gene, in particular, by targeting natural antisense polynucleotides of a Pancreatic Developmental gene. The invention also relates to the identification of these antisense oligonucleotides and their use in treating diseases and disorders associated with the expression of Pancreatic Developmental genes.

34 Claims, 5 Drawing Sheets

US 9,267,136 B2Page 2

(56)		Referen	ices Cited		,582 B2		Wengel et al.
	HC	DATENIT	DOCUMENTS		,745 B2 ,893 B2	9/2009 9/2009	Sah et al. Baguley et al.
	U.S.	PALENT	DOCUMENTS		,190 B2	9/2009	Westergaard et al.
6,316,19	8 B1	11/2001	Skouv et al.		,227 B2		Crooke et al.
6,335,43			Guzaev et al.		,251 B2 ,453 B2		Tan et al. Frieden et al.
6,376,54 6,403,56		4/2002 6/2002	Nixon et al.		,948 B2		Kurreck et al.
6,444,46		9/2002			,854 B2	2/2010	Seth et al.
6,451,99		9/2002	Martin et al.		,895 B2		Reich et al.
6,525,19			Ramasamy		,617 B2 ,995 B2		Thrue et al. Zamore et al.
6,528,26 6,528,63			Gilad et al. Cook et al.		,902 B2		Crooke
6,617,12			Hayden et al.		,345 B2		Allerson et al.
6,617,44		9/2003	Crooke et al.		,456 B2 ,630 B2		Corey et al. Gaarde et al.
6,630,31 6,639,05			Miwa et al. Kochkine et al.		,738 B2		Hansen et al.
6,656,73			Manoharan		,629 B2		Bamcrot et al.
6,667,33	7 B2	12/2003			,508 B2		Crooke et al.
6,670,46			Wengel et al. Bennett et al.		,422 B2 ,590 B2		Gleave et al. Bhanot et al.
6,710,17 6,734,29			Kochkine et al.		,264 B2		Thrue et al.
6,762,16			Manoharan		,265 B2		Akinc et al.
6,794,49			Wengel et al.		,305 B2 ,309 B2		Crooke et al. Hansen et al.
6,833,36 6,861,51			Hong et al. Cook et al.		,457 B2		Seth et al.
6,867,29			Sanghvi et al.	7,745	,609 B2	6/2010	Bennett et al.
6,936,46	7 B2	8/2005	Kmiec et al.		,978 B2		Sah et al.
6,936,59			Agrawal et al.	2003/0139	,882 B2* 9359 A1	7/2003	Cao et al 435/6.12 Dobie
6,977,29 6,986,98			Belotserkovskii et al. Gilad et al.	2003/0186		10/2003	
7,034,13			Wengel et al.	2003/0191			Cook et al.
7,034,14			Shen et al.	2003/0228 2003/0233			Levanon et al. Edgerton et al.
7,053,19 7,053,19		5/2006	Goff Imanishi et al.	2003/0233			Dean et al.
7,053,19			Wengel	2004/0033		2/2004	Wong
7,060,80			Wengel et al.	2004/0101			Ward et al.
7,084,12			Wengel	2004/0137 2004/0138			Hayden et al. Baird et al.
7,087,58 7,125,98		8/2006 10/2006	Jacobson et al.	2004/0175			Meritet et al.
7,144,99			Wise et al.	2004/0180			Gilad et al.
7,144,99	9 B2		Ward et al.	2004/0254			Ackermann et al.
7,148,20			Bennett et al.	2005/0009 2005/0026			Levanon et al. Allerson et al.
7,153,95 7,169,91			Koch et al. Krotz et al.	2005/0113			Siwkowski et al.
7,199,10	7 B2		Dobie et al.	2005/0143			Pousette et al.
7,202,35			Crooke et al.	2005/0153 2005/0215			Clements Bennett et al.
7,217,57 7,220,54		5/2007	Ward et al.	2005/0213			Bartel et al.
7,226,78			Kmiec et al.	2006/0009			Crooke et al.
7,229,97			Peyman et al.	2006/0142			Klein et al. Soreq et al.
7,229,97 7,235,53			Dobie et al. Tanguay et al.	2006/0178 2007/0082			Alitalo et al.
7,235,65		6/2007	Bennett et al.	2007/0197	7459 A1	8/2007	Milner
7,238,85	8 B2	7/2007	Marraccini et al.	2007/0213			Salonen
7,276,59			Moore et al.	2007/0213 2007/0231		9/2007 10/2007	
7,285,28 7,297,78			Tormo et al. McCray et al.	2007/0248			Milne et al.
7,314,92			Kaneko et al.	2008/0146			Bhat et al.
7,320,96			Sah et al.	2008/0221 2008/0293			Becker et al. Liu et al.
7,321,82 7,335,76			Cowsert et al. Crooke et al.	2009/0293			Reich et al.
7,335,76			Kaneko et al.	2009/0192			Dobie et al.
7,339,05	1 B2		Crooke et al.	2009/0208			Jaye et al.
7,371,83		5/2008		2009/0258 2009/0318		10/2009	Wahlestedt Freier et al.
7,399,84 7,402,43			Seth et al. Newman et al.	2009/0316			Bhanot et al.
7,402,57			Iversen et al.	2010/0105			Collard et al.
7,420,05	0 B2		Park et al.				
7,423,14 7,425,54			Vornlocher Crooke et al.		FOREI	GN PATE	NT DOCUMENTS
7,423,34			Crooke et al. Capaldi et al.	EP	20	25451 42	10/1080
7,456,15		11/2008	Soreq et al.	WO	WO-84/0	35451 A2 33564	10/1989 9/1984
7,462,64			Wang et al.	WO	WO-91/1		12/1991
7,468,43 7,510,83			Bhanot et al. Baguley et al.	WO	WO-92/0		1/1992
7,510,83			Baguley et al. Bhat et al.	WO WO	WO-92/0 WO-93/2		5/1992 10/1993
7,547,68	4 B2		Seth et al.	WO		26887 A1	11/1994
7,569,57	5 B2	8/2009	Sorensen et al.	WO	WO-94/2	28143	12/1994

(56)	References Cited				
	FOREIGN PATE	NT DOCUMENTS			
WO	WO-95-15373 A2	6/1995			
WO	WO-95/22618	8/1995			
WO	WO-95/25116	10/1995			
WO	WO-95/35505	12/1995			
WO	WO-96-27663 A2	9/1996			
WO	WO-97-39120 A1	10/1997			
WO	WO-99-14226 A1	3/1999			
WO	WO-99-39352 A1	8/1999			
WO	WO-00-57837 A1	10/2000			
WO	WO-00-61770 A2	10/2000			
WO	WO-01-00669 A2	1/2001			
WO	WO-01-21631 A2	3/2001			
WO	WO-01-25488 A2	4/2001			
WO	WO-01-51630 A1	7/2001			
WO	WO-02-062840 A1	8/2002			
WO	WO-02-068688 A1	9/2002			
WO	WO-2004-016255 A1	2/2004			
WO	WO-2004-024079 A2	3/2004			
WO	WO-2004-030750 A1	4/2004			
WO	WO-2004-041838 A1	5/2004			
WO	WO-2004-104161 A2	12/2004			
WO	WO 2005-045034 A2	5/2005			
WO	WO-2005-070136 A2	8/2005			
WO	WO-2005-079862 A1	9/2005			
WO	WO-2007-028065 A2	3/2007			
WO	WO-2007-071182 A1	6/2007			
WO	WO-2007-087113 A1	8/2007			
WO	WO-2007-138023 A1	12/2007			
WO	WO-2008-057556 A2	5/2008			
WO	WO-2008-066672 A2	6/2008			
WO	WO-2008-087561 A2	7/2008			
WO	WO-2010-002984 A1	1/2010			
WO	WO-2010-040571 A2	4/2010			
WO	WO-2010-054364 A1	5/2010			
WO	WO-2010-058227 A2	5/2010			

OTHER PUBLICATIONS

Barak, et al., "A β -Arrestin/Green Fluorescent Protein Biosensor for Detecting G Protein-Coupled Receptor Activation," J. Biol. Chem. 272;27497-27500 (1997).

Barber, et al., "Delivery of membrane-impermeant fluorescent probes into living neural cell populations by lipotransfer," Neuroscience Letters 207;17-20 (1996).

Baum, "Solid-phase synthesis or benzodiazepines," C&EN News, Jan. 18, p. 33-34 (1993).

Bernstein, E., et al., "Role for a Bidentate Ribonuclease in the Initiation Step of RNA Interference," Nature 409:363-366 (2001).

Boutla, A., et al., "Short 5'-phosphorylated double-stranded RNAs induce RNA interference in Drosophila," Curr. Biol. 11:1776-1780 (2001).

Boyd-Kimball et al., "Proteomic Identification of Proteins Specifically Oxidized by Intracerebral Injection of Amyloid β-Peptide (1-42) into Rat Brain: Implications for Alzheimer's Disease," Neuroscience 132, 313-324 (2005).

Brazma & Vilo, "Gene expression data analysis," FEBS Lett., 480:17-24 (2010).

Bright, et al., "Chapter 6. Fluorescence Ratio Imaging Microscopy," Methods in Cell Biology vol. 30, Taylor and Wang (eds) p. 157-192 (1989)

Bright, et al., "Delivery of Macromolecules Into Adherent Cells via Electroporation for Use in Fluorescence Spectroscopic Imaging and Metabolic Studies," Cytometry 24:226-233 (1996).

Bright, et al., "Fluorescence Ratio Imaging eroscopy: Temporal and Spatial Measurements of Cytoplasmic pH," J. Cell Biology 104:1019-1033 (1987).

Campbell, et al., "Phosphonmate Ester Synthesis Using a Modified Mitsunobu Condensation," J. Org. Chem. 59:658-660 (1994).

Caplen, N. J. et al., "Specific inhibition of gene expression by small double-stranded RNAs in invertebrate and vertebrate systems." PNAS Sci. USA 98:9742-9747 (2001).

Carninci, et al., "The transcriptional landscape of the mammalian genome," Science 309:1559-1563 (2005).

Carulli, et al., "High Throughput Analysis of Differential Gene Expression," J. Cell Biochem. Suppl., 3:286-296 (1998).

Celis, et al., "Gene expression profiling: monitoring transcription and translation products using DNA microarrays and proteomics," FEBS Lett., 480:2-16 (2000).

Chabala, J.C., "Solid-phase combinatorial chemistry and novel tagging methods for identifying leads," Curr Opin Biotechnol. 6:632-639 (1995).

Cech, J., "Ribozymes and Their Medical Implications," American. Med Assoc. 260:3030-3035 (1988).

Chen, et al., "Expression of ssDNA in Mammalian Cells," BioTechniques 34:167-171 (2003).

Chen, et al., "Analogous Organic Synthesis of Small-Compound Libraries: Validation of Combinatorial Chemistry in Small-Molecule Synthesis," J. Amer. Chem. Soc. 116:2661-2662 (1994).

Cheng, J. et al., "Transcriptional maps of 10 human chromosomes at 5-nucleotide resolution," Science 308:5725:1149-1154 (2005).

Cho, et al., "An Unnatural Biopolymer," Science 261:1303-1305 (1993).

Christiensen N. K. et al., "A Novel Class of Oligonucleotide Analogues Containing 2'-O,3'-C-Linked [3.2.0]Bicycloarabinucleoside Monomers: Synthesis, Thermal Affinity Studies, and Molecular Modeling," J. Am. Chem. Soc., 120:5458-5463 (1998).

Cubitt, et al., "Understanding, improving and using green fluorescent proteins," Trends in Biochemical Science 20:448-455 (1995).

Curiel, D. T. et al., "Adenovirus enhancement of transferrin-polylysine-medialed gene delivery," PNAS 88:8850-8854 (1991).

Dai et al., "SIRT1 Interacts With p73 and Suppresses p73-Dependent Transcriptional Activity," J Cell Physiol 210(1):161-165 (2007).

Davidson, et al., "A model system for in vivo gene transfer into the central nervous system using an adenoviral vector," Nat. Genet 3:219-223 (1993).

Davis, et al., "Direct Gene Transfer into Skeletal Muscle In Vivo: Factors Affecting Efficiency of Transfer and Stability of Expression," Hum Gene Ther 4:151-159 (1993).

De Mesmaeker, et al., "Antisense Oligonucleotides," Acc. Chem. Res. 28:366-374 (1995).

Deng et al., "Small Interfering RNA Targeting the PINK1 Induces Apoptosis in Dopaminergic Cells SH-SY5Y", Biochemical and Biophysical Research Communications, vol. 337, No. 4, pp. 1133-1138

Dixon, et al., "Anthrax," New England J. Med. 341:815-826 (1999). Dolle, "Discovery of Enzyme inhibitors through combinatorial chemistry," Mol Divers. 2:223-236 (1997).

Dykxhoorn, D. et al., "Determinants of Specific RNA Interference-Mediated Silencing of Human β -Globin Alleles Differing by a Single Nucleotide Polymorphism," PNAS, vol. 103, No. 15, pp. 5953-5958, (2006).

Eguchi, et al., "Antisense RNA," Annu. Rev. Biochem 60:631-652 (1991).

Eichler, et al., "Generation and utilization of synthetic combinatorial libraries," Mol Med Today 1:174-180 (1995).

Eichler, et al., "Peptide Peptidomimetic and organic synthetic combinatorial libraries," Med Res Rev 15:481-496 (1995).

Espeseth, et al., "A genome wide analysis of ubiquitin ligases in APP processing identifies a novel regulator of BACE1 mRNA levels," Mol. Cell Neurosci. 33: 227-235 (2006).

Faghihi, M. & Wahlestedt, C., "RNA interference is not involved in natural antisense mediated regulation of gene expression in mammals," Genome Biol (2005).

Fauchere et al., "Peptide and nonpeptide lead discovery using robotically synthesized soluble libraries," Can J. Physiol Pharmacol. 75:683-689 (1997).

Felgner and Holm, "Cationic Liposome-Mediated Transfection," Bethesda Res. Lab Focus, 11:2:21 (1989).

Fields, et al., "How many genes in the human genome?" Nature Genetics 7:345-346 (1994).

Freier & Altman, "The ups and downs of nucleic acid duplex stability: structure-stability studies on chemically-modified DNA:RNA duplexes," Nucl. Acid Res., 25:22:4429-4443(1997).

(56) References Cited

OTHER PUBLICATIONS

Fuchs, et at., "Identification of Differentially Expressed Genes by Mutually Subtracted RNA Fingerprinting," Anal. Biochem., 286:91-98 (2000).

Gebeyehu, G., et al., "Novel biotinylated nucleotide-analogs for labeling and colorimetric detection of DNA," Nucl. Acids Res. 15:4513 (1987).

Geller, A.I. et al., "An HSV-1 Vector Expressing Tyrosine Hydroxylase Causes Production and Release of L-DOPA from Cultured Rat Striatal Cells," J. Neurochem 64:487-496 (1995).

Geller, A.I. et al., "Long-term increases in neurotransmitter release from neuronal cells expressing a constitutively active adenylate cyclase from a herpes simplex virus type 1 vector," PNAS U.S.A.:90:7603-7607 (1993).

Geller, A.I., et al., "Infection of cultured central nervous system neurons with a defective herpes simplex virus 1 vector results in stable expression of *Escherichia coli* β -galactosidase," PNAS USA 87:1149-1153 (1990).

GenBank Accession No. NM_000559, Homo Sapiens Hemoglobin, Gamma A (HBG1), mRNA, (2008).

Giuliano, et al., "FLuorescent Protein Biosensors: Measurement of Molecular Dynamics in Living, Cells," Ann. Rev. of Biophysics and Biomolecular Structure. 24:405-434 (1995).

Giuliano, et al., "Light-Optical-Based Reagents for the Measurement and Manipulation of Ions, Metabolites, and Macromolecules in Living Cells," Methods in Neuroscience 27:1-16 (1995).

Giuliano, et al., "Determination of Intracellular pH of BALB/c-3T3 Cells Using the Fluorescence of Pyranine," Anal. Biochem 167:362-371 (1987).

Going & Gusterson, "Molecular Pathology and Future Developments," Eur. J. Cancer, 35:1895-1904 (1999).

Hagihara, et al., "Vinylogous Polypeptides: An Alternate Peptide Backbone," J. Amer. Chem. Soc. 114:6568-6571 (1992).

Haussecker, D., et al., "Dicer-Dependent Turnover of Intergenic from the Human β -Globin Gene Cluster," Molecular and Cellular Biology, vol. 25, No. 21, pp. 9724-9793, (2005).

Heller, et al., "Discovery and Analysis of Inflammatory Disease-Related Genes Using cDNA Microarrays," PNAS U.S.A. 94:2150-2155 (1997).

Herdewun P., "Heterocyclic Modifications of Oligonucleotides and Antisense Technology," Antisense & Nucleic Acid Drug Dev., 10:297-310 (2000).

Hirschmann, et al., J. Amer. Chem. Soc., 114:9217-9218 (1992).

Hobbs-DeWitt, et al., "Diversomers: An approach to nonpeptide, nonoligomeric chemical diversity," Proc. Nat. Acad. Sci USA 90:6909-6913 (1993).

Houghton AN, Gold JS, Blachere NS, Immunity against cancer: lessons learned from melanoma,. Curr Opin Imumnol 13:134-140 (2001).

International Human Genome Sequencing Consortium "Finishing the deuchromatic sequence of the human genome," Nature 431:7011:931-945 (2004).

Janda, K.D. "Tagged versus untagged libraries: Methods for the generation and screening of combinatorial chemical libraries," PNAS 91:1079-10785 (1994).

Janowski, et al., "Inhibiting gene expression at transcription start sites in chromosomal DNA with antigene RNAs," Nature Chemical Biology, 1(4):216-222 (2005).

Jungblut, et al., "Proteomics in human disease: Cancer, heart and infectious diseases," Electrophoresis 20:2100-2110 (1999).

Jurecic & Belmont, "Long-distance DD-PCR and cDNA microarrays," Curr. Opin. Microbiol., 3:316-321 (2008).

Kabanov, et al., "A new class of antivirals: antisense oligonucleotides combined with a hydrophobic substituent effectively inhibit influenza virus reproduction and synthesis of virus-specific proteins in MDCK cells," FEBS Lett. 259:327-330 (1990).

Kaplitt, M.G., et al., "Long-term gene expression and phenotypic correction using adeno-associated virus vectors in the mammalian brain," Nat. Genet. 8:148-154 (1994).

Kapranov, P. et al., "Examples of the complex architecture of the human transcriptome revealed by RACE and high-density tiling arrays," Genome Res 15:7:987-997 (2005).

Katayama, S. et al., "Antisense Transcription in the Mammalian Transcriptome," Science 309:1564-1566 (2005).

Kawahara & Nishikura, "Extensive adenosine-to-inosine editing detected in Alu repeats of antisense RNAs reveals scarcity of sense-antisense duplex formation," FEBS Lett 580:2301-2305 (2006).

Kay, et al., "Identification or enzyme inhibitors from phage-displayed combinatorial peptide libraries," Comb Chem High Throughput Screen 4:535-543 (2001).

Kenan, et al., "Exploring molecular diversity with combinatorial shape libraries," Trends Biochem Sci 19:57-64 (1994).

Kornberg, A., DNA Replication, W.H. Freeman & Co., San Francisco, pp. 75-77, (1980).

Larson, et al., "Rapid DNA Fingerprinting of Pathogens by Flow Cytometry," Cytometry, 2000, 41:203-208 (2000).

Larsson, et al., "High-Throughput Protein Expression of cDNA Products as a Tool in Functional Genomics," J. Biotechnology., 80:143-157 (2000).

Lebl, et al., "One-bead-one-structure combinatorial libraries," Biopolymers 37:177-198 (1995).

LeGal Lasalle et al., "An Adenovirus Vector for Gene Transfer into Neurons and Glia in teh Brain," Science 259:988-990 (1993).

Letsinger, et al., "Cholesteryl-conjugated oligonucleotides: Synthesis, Properties, and Activity as Inhibitors of Replication of Human Immunodeficiency Virus in Cell Culture," PNAS 86:6553-6556 (1989).

Li et al., "Control of APP processing and Aβ generation level by BACE1 enzymatic activity and transcription," Faseb J 20; 285-292 (2006).

Li, et al., J. Neurochem 89 1308-1312 (2004).

Liang, et al., "Parallel Synthesis and Screening of a Solid Phase Carbohydrate Library," Science 274:1520-1522 (1990).

Luther, "Role of endogenous antisense RNA in cardiac gene regulation," J. Mol. Med. 83:26-32 (2005).

Madden, et al., "Serial analysis of gene expression: from gene discovery to target identification," Drug Discov. Today 5:415-425 (2000).

Makalowska I, Lin CF., Makalowski W., "Overlapping genes in vertebrate genomes," Comput Biol. Chem 29:1:1-12 (2005).

Mannino and Gould-Fogerite, "Liposome Mediated Gene Trainsfer," Bio Techniques 6:682-690 (1988).

Manoharan et al., "Lipidic Nucleic Acids," Tetrahedron Lett 36 3651-3654 (1995).

Manoharan, et al., "Chemical Modifications to Improve Uptake and Bioavailability of Antisense Oligonucleotides," Ann. N.Y. Acad. Scie 660:306-309 (1992).

Manoharan, et al., "Introduction of a Lipophilic Thioether in teh Minor Groove of Nucleic Acids for Antisense Applications," Bioorg. Med. Chem. Let 3.2765-2770 (1993).

Manoharan, et al., "Cholic Acid-Oligonucleotide Conjugates for Antisense Applications," Bioorg. Med. Chem. Let 4;1053 (1994).

Manoharan, et al., "Oligonucleotide Conjugates: Alteration of the Pharmacokinetic Properties of Antisense Agents," Nucleosides & Nucleotides 14:969-973 (1995).

Manoharan, M., "2'-Carbohydrate modifications in antisense of oligonucleotide therapy: importance of conformation, configuration, and conjugation," Biochemica et Biophysica Acta 1489:117-139 (1999).

Mattick, J. S. "RNA regulation: a new genetics?" Nat. Rev. Genet 5:4:316-323 (2004).

Maurer, R.A., "Cationic Liposome-Mediated Transfection of Primary Cultures of Rat Pituitary Cells," Bethesda Res. Lab. Focus 11:2:25 (1989).

McNeil in Methods in Cell Biology Vol 29, Taylor and Wang (eds.) p. 153-173 (1989).

Morelli et al., "The antisense *bel-2-IgH* transcript is an optimal target for synthetic oligonucleotides," PNAS USA 94:8150-8155 (1997).

Nielsen, et al., "Sequence-Selective Recognition of DNA by Strand Displacement with a Thymine-Substituted Polyamide," Science 254:1497-1500 (1991).

(56) References Cited

OTHER PUBLICATIONS

Oberhauser, et al., "Effective incorporation of 2'-O-methyloligoribonucleotides into liposomes and enhanced cell association through modification with thiocholesterol," Nucl. Acids Res. 20:333-538 (1992).

538 (1992). Petit et al., "Wild-type Pink 1 Prevents Basal and Induced Neuronal Apoptosis, a Protective Effect Abrogated by Parkinson Disease-Related Mutations", Journ. Biol. Chem., vol. 280, No. 40, pp. 34025-334032 (2005).

Prasanth, et al., "Regulating Gene Expression through RNA Nuclear Retention," Cell 123, 249-263 (2005).

Prashar & Weissman, "READS: A Method for Display of 3'-End Fragments of Restriction Enzyme-Digested cDNAs for Analysis of Differential Gene Expression," Methods Enzymol., 303:238-272 (1999).

Quantin, et al., "Adenovirus as an expression vector in muscle cells in vivo," PNAS 89:2581-2584 (1992).

Rosenfeld, et al., "In Vivo Transfer of the Human Cystic Fibrosis Transmembrane Conductance Regulator Gene to the Airway Epithelium," Cell, 68:143-155 (1992).

Rosok and Sioud, "Systematic identification of sense-antisense transcripts in mammalian cells," Nature Biotech, 22(1):104-108 (2004). Saison-Behmoaras, et al., "Short modified antisense oligonucleotides directed against Ha-ras point mutation induce selective cleavage of the mRNA and inhibit: T24 cells proliferation," EMBO J. 10:1111-1118 (1991).

Sanghvi, Y.S., in Crooke, S.T. And Lebleu, B., eds., Antisense Research and Applications, CRC Press, Boca Raton, 1993, p. 276-278.

Scheele et al., "The Human PINK1 Locus is Regulated and Vivo by a Non-Coding Natural Antisense RNA During Modulation of Mitochondrial Function", BMC Genomics, vol. 8, No. 1 p. 74 (2007). Schena, et al., "Parallel human genome analysis: Microarray-based expression monitoring of 1000 genes," PNAS 93:10614-10619(1996).

Shea, et al., "Synthesis, hybridization properties and antiviral activity of lipid-oligodeoxynucleotide conjugates," Nucl. Acids Res 18:3777-3783 (1990).

Shen, T., et al., "Modification of Globin Gene Expression by RNA Targeting Strategies," Experimental Hematology, vol. 35, No. 8, pp. 1209-1218 (2007).

Shimomura, et al., "Semi-synthetic aequorin," J. of Biochemistry (Tokyo) 251:405-410 (1988).

Singer, et al., "Targeting BACE1 with siRNAs ameliorates Alzheimer disease neuropathology in a transgenic model," Nat Neurosci 8:1343-1349 (2005).

Southwick, et al., "Cyanine Dye Labeling Reagents-Carboxymethylindocyanine Succinimidyl Esters," Cytometry 11:418-430 (1990)

Stratford-Perricadet, et al., "Widespread Long-term Gene Transfer to Mouse Skeletal Muscles and Heart," J. Clin. Invest., 90:626-630 (1992).

Sullenger, et al., "Overexpression of TAR sequences Renders Cells Resistant to Human Inununodefietency Virus Replication," Cell63:601-608 (1990).

Sun, et al., "Downregulation of Sirt1 by antisense oligonucleotides induces apoptosis and enhances radiations sensitization in A549 lung cancer cells," Lung Cancer 58(1):21-29 (2007).

Sutcliffe, et al., "TOGA: An automated parsing technology for analyzing expression of nearly all genes," PNAS, 97:1976-1981 (2000). Sutton, et al., "TIGR Assembler: A New Tool for Assembling Large Shotgun Sequencing Projects," Genome Science & Tech., 1:9-19 (1995).

Svinarchuk, et al., "Inhibtion of HIV proliferation in MT-4 cells by antisense Oligonucleotide conjugated to lipophilic groups," Biochimie 75:49-54 (1993).

Tamagno, et al., "The various aggregation states of β-amyloid 1-42 mediate different effects on oxidative stress, neurodegeneration, and BACE-1 expression." Free Radic Biol Med 41:202-212 (2006)

BACE-1 expression," Free Radic Biol Med 41:202-212 (2006). Thakker., D.R., et al., "siRNA-mediated knockdown of the serotonin transporter in the adult mouse brain," Mol Psychiatry 10:782-789 (2005).

Thakker, et al., "Neurochemical and behavioral consequences of widespread gene knockdown in the adult mouse brain by using nonviral RNA interference," PNAS 101:17270-17275 (2004).

Thomas et al., "Intracellular pH Measurements in Ehrlicha Ascites Tumor Cells Utilizing Spectroscopic Probes Generated in Situ," Biochemistry 18:2210-2218 (1979).

Thompson, et al., "Synthesis and Applications of Small Molecule Libraries" Chem Rev 96:555-600 (1096).

To, KY, "Identification of Differential Gene Expression by High Throughput Analysis," Comb. Chem. High Throughput Screen 3:235-241 (2000).

Tong, et al., "Oxidative stress potentiates BACE1 gene expression," Neural Transm 112, 455-469 (2005).

Toulme, J.J., "New candidates for true antisense," Nature Biotechnology 19:17-18 (2001).

Tsien in Methods in Cell Biology vol. 30 Taylor and Wang (eds) p. 127-156 (1989).

Ulhman, E., "Recent advances in the medical chemistry of antisense oligonucleotide," Current Opinions in Drug Discovery & Development 3:203-213 (2000).

Van Den Eynde BJ, "T cell defined tumor antigens," Curr Opin Immunol 9:684-693 (1997).

Van Der Bruggen, et al., "Tumor-specific shared antigenic peptides recognized by human T cells," Immmol Rev188:51-64 (2002).

Vanhee-Brossolet and Vaquero, "Do natural antisense transcripts make sense in eukaryotes?" Gene 211:1-9 (1998).

Vaughn et al., "Human Antibodies with Sub-nanomolar Affinities Isolated from a Large Non-immunized Phage Display Library," Nature Biotechnology, 14:3:309-314 (1996).

Velculescu, et al., "Serial Analysis of Gene Expression," Science 270:484-487 (1995).

Wahlestedt, "Natural antisense and noncoding RNA transcripts as potential drug targets," Drug Discovery Today 11 (11/12):503-508 (2006)

Wahlestedt, C., "Antisense oligonucleotide strategies in neuropharamcology," Trends Pharmacol Sci 15:2:42-46 (1994).

Walsh, et al., "The role of cell-derived oligomers of $A\beta$ in Alzheimer's disease and avenues for therapeutic intervention," Biochem Soc Trans 33: 1087-1090 (2005).

Wang, B.B, et al., "Identification of a nuclear-specific cyclophilin which interacts with the proteinase inhibitor eglin c," Biochem 1, 314 (Pt 1) 313-319 (1996).

Wiesenhofer, et al., "Glial cell line-derived neurotrophic factor (GDNP) is a proliferation factor for rat C6 glioma cells: evidence from antisense experiments," Antisense & Nucleic Acid Drug Development 10(5):311-321 (2000).

Xue, et al., "Hypoxia and reoxygenation increased BACE1 mRNA and protein levels in human neuroblastoma SH-SY5Y cells," Neurosci Lett 405,231-235 (2006).

Yamada, et al., "Endothelial Nitric-Oxide Synthase Antisense (NOS3AS) Gene Encodes an Autophagy-Related Protein (APG9-like2) Highly Expressed in Trophoblast" (2005).

Yang, et al., "Cellular and Humoral Immune Responses to Viral Antigens Create Barriers to Lung-Directed Gene Therapy with Recombinant Adenoviruses," J. Virol 69:2004-2015 (1995).

Yoshiagi, et al., "Characterization of Natural Antisense Transcripts Expressed from Interleukin 1β-inducible Genes in Rat Hepatocytes," HOAJ Biology; 1-10 (2012).

EP Application No. 06850393.7 Examination Report dated Oct. 18, 2011.

International Search Report and Written Opinion lor PCT Application No. PCT/US2010/033078 mailed Jun. 29, 2011.

PCT/US2010/026119 Search Report and Written Opinion mailed Feb. 7, 2011.

PCT/US2010/024079 Search Report and Written Opinion mailed Jan. 31, 2011.

PCT/US2010/027394 Search Report and Written Opinion mailed Nov. 5, 2010.

PCT/US96/10287 (WO97/000271) The Regents of the University of California Jan. 3, 1997.

* cited by examiner

Figure 1

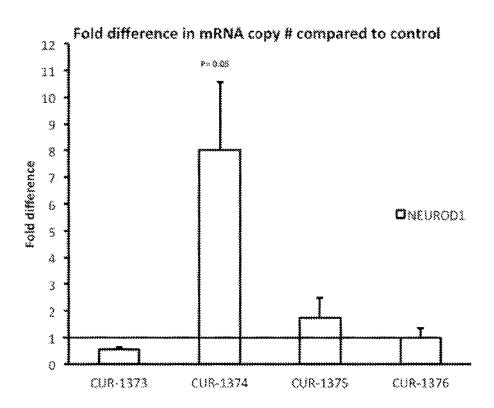


Figure 2
Fold difference in mRNA copy # compared to control

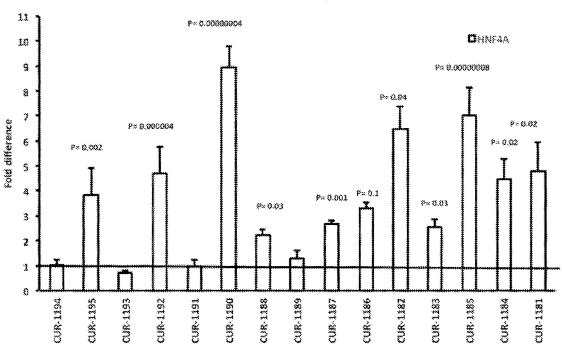


Figure 3

Fold difference in mRNA copy # compared to control

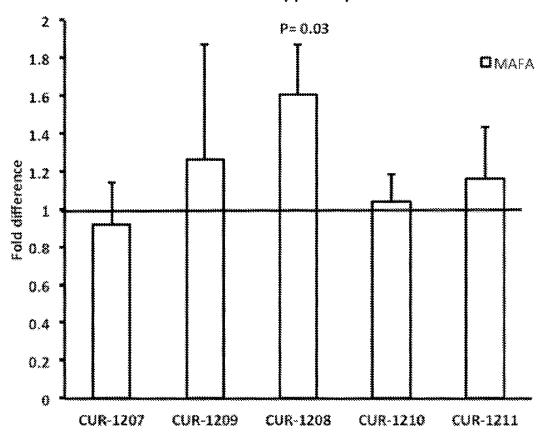


Figure 4

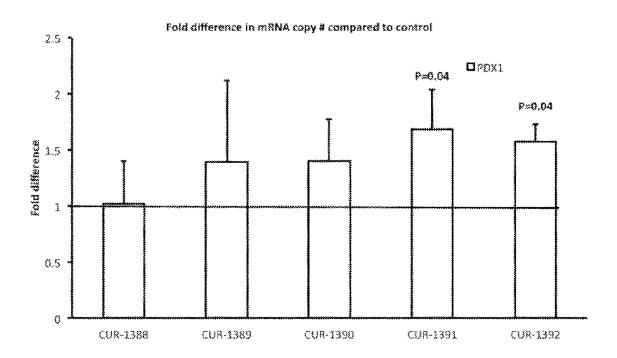
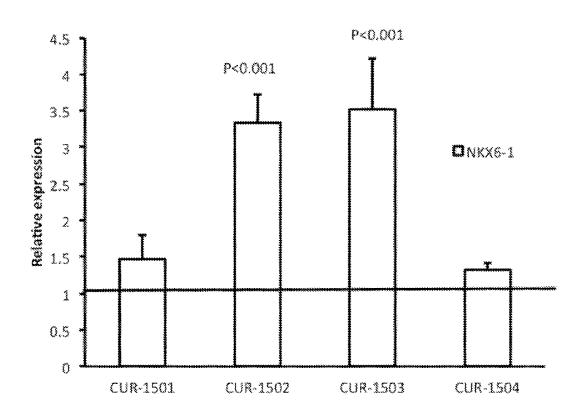



Figure 5

Fold difference in mRNA copy number compared to control

TREATMENT OF PANCREATIC DEVELOPMENTAL GENE RELATED DISEASES BY INHIBITION OF NATURAL ANTISENSE TRANSCRIPT TO A PANCREATIC DEVELOPMENTAL GENE

The present application claims the priority of U.S. provisional patent application 61/292,508 filed Jan. 6, 2010; U.S. provisional patent application No. 61/294,129 filed Jan. 12, 2010; U.S. provisional patent application No. 61/297,847 filed Jan. 25, 2010, U.S. provisional patent application No. 61/297,863 filed Jan. 25, 2010; U.S. provisional patent application No. 61/323,027 filed Apr. 12, 2010 and which are incorporated herein by reference in their entireties.

FIELD OF THE INVENTION

Embodiments of the invention comprise oligonucleotides modulating expression and/or function of a Pancreatic Developmental gene and associated molecules.

BACKGROUND

DNA-RNA and RNA-RNA hybridization are important to many aspects of nucleic acid function including DNA repli- 25 cation, transcription, and translation. Hybridization is also central to a variety of technologies that either detect a particular nucleic acid or alter its expression. Antisense nucleotides, for example, disrupt gene expression by hybridizing to target RNA, thereby interfering with RNA splicing, transcription, translation, and replication. Antisense DNA has the added feature that DNA-RNA hybrids serve as a substrate for digestion by ribonuclease H, an activity that is present in most cell types. Antisense molecules can be delivered into cells, as is the case for oligodeoxynucleotides (ODNs), or they can be 35 expressed from endogenous genes as RNA molecules. The FDA recently approved an antisense drug, VITRAVENETM (for treatment of cytomegalovirus retinitis), reflecting that antisense has therapeutic utility.

SUMMARY

In one embodiment, the invention provides methods for inhibiting the action of a natural antisense transcript by using antisense oligonucleotide(s) targeted to any region of the 45 natural antisense transcript resulting in up-regulation of the corresponding sense gene. It is also contemplated herein that inhibition of the natural antisense transcript can be achieved by siRNA, ribozymes and small molecules, which are considered to be within the scope of the present invention.

One embodiment provides a method of modulating function and/or expression of a Pancreatic Developmental gene polynucleotide in patient cells or tissues in vivo or in vitro comprising contacting said cells or tissues with an antisense oligonucleotide 5 to 30 nucleotides in length wherein said 55 oligonucleotide has at least 50% sequence identity to a reverse complement of a polynucleotide comprising 5 to 30 consecutive nucleotides within nucleotides 1 to 1235 of SEQ ID SEQ ID NO: 6, 1 to 17,964 of SEQ ID NO: 7, 1 to 1 to 50,003 of SEQ ID SEQ ID NO: 8, 1 to 486 of SEQ ID NO: 9, 60 1 to 494 of SEQ ID NO: 10, 1 to 1992 of SEQ ID NO: 11, or 1 to 1767 of SEQ ID NO: 12 thereby modulating function and/or expression of the Pancreatic Developmental gene polynucleotide in patient cells or tissues in vivo or in vitro.

In another embodiment, an oligonucleotide targets a natural antisense sequence of a Pancreatic Developmental gene polynucleotide, for example, nucleotides set forth in SEQ ID

2

NO: 6 to 12, and any variants, alleles, homologs, mutants, derivatives, fragments and complementary sequences thereto. Examples of antisense oligonucleotides are set forth as SEQ ID NOS: 13 to 45.

Another embodiment provides a method of modulating function and/or expression of a Pancreatic Developmental gene polynucleotide in patient cells or tissues in vivo or in vitro comprising contacting said cells or tissues with an antisense oligonucleotide 5 to 30 nucleotides in length wherein said oligonucleotide has at least 50% sequence identity to a reverse component of the an antisense of the Pancreatic Developmental gene polynucleotide; thereby modulating function and/or expression of the Pancreatic Developmental gene polynucleotide in patient cells or tissues in vivo or in vitro.

Another embodiment provides a method of modulating function and/or expression of a Pancreatic Developmental gene polynucleotide in patient cells or tissues in vivo or in vitro comprising contacting said cells or tissues with an antisense oligonucleotide 5 to 30 nucleotides in length wherein said oligonucleotide has at least 50% sequence identity to an antisense oligonucleotide to a Pancreatic Developmental gene antisense polynucleotide; thereby modulating function and/or expression of the Pancreatic Developmental gene polynucleotide in patient cells or tissues in vivo or in vitro.

In one embodiment, a composition comprises one or more antisense oligonucleotides which bind to sense and/or antisense Pancreatic Developmental gene polynucleotides.

In another embodiment, the oligonucleotides comprise one or more modified or substituted nucleotides.

In another embodiment, the oligonucleotides comprise one or more modified bonds.

In yet another embodiment, the modified nucleotides comprise modified bases comprising phosphorothioate, methylphosphonate, peptide nucleic acids, 2'-O-methyl, fluoro- or carbon, methylene or other locked nucleic acid (LNA) molecules. Preferably, the modified nucleotides are locked nucleic acid molecules, including α-L-LNA.

In another embodiment, the oligonucleotides are adminis-40 tered to a patient subcutaneously, intramuscularly, intravenously or intraperitoneally.

In another embodiment, the oligonucleotides are administered in a pharmaceutical composition. A treatment regimen comprises administering the antisense compounds at least once to patient; however, this treatment can be modified to include multiple doses over a period of time. The treatment can be combined with one or more other types of therapies.

In another embodiment, the oligonucleotides are encapsulated in a liposome or attached to a carrier molecule (e.g. 50 cholesterol, TAT peptide).

Other aspects are described infra.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a graph of real time PCR results showing die fold change+standard deviation in NEUROD1 mRNA after treatment of HepG2 cells with phosphorothioate oligonucleotides introduced using Lipofectamine 2000, as compared to control. Real time PCR results show that the levels of the NEUROD1 mRNA in HepG2 cells are significantly increased 48 h after treatment with one of the oligos designed to NEUROD1 antisense Steedo.aApr07. Bars denoted as CUR-1373, CUR-1374, CUR-1375 and CUR-1376 correspond to samples treated with SEQ ID NOS: 13 to 16 respectively.

FIG. 2 is a graph of real time PCR results showing the fold change+standard deviation in HNF4A mRNA after treatment of 518A2 cells with phosphorothioate oligonucleotides intro-

duced using Lipofectamine 2000, as compared to control. Bars denoted as CUR-1194, CUR-1195, CUR-1193, CUR-1192, CUR-191, CUR-1190, CUR-1188, CUR-1189, CUR-1187, CUR-1186, CUR-1182, CUR-1183, CUR-1185, CUR-1184, CUR-1181 correspond to samples treated with SEQ ID 5 NOS: 17 to 31 respectively.

FIG. 3 is a graph of real time PCR results showing the fold change+standard deviation in MAFA mRNA after treatment of HepG2 cells with phosphorothioate oligonucleotides introduced using Lipofectamine 2000, as compared to control. Real time PCR results show that the levels of MAFA mRNA in HepG2 cells are significantly increased 48 h after treatment with one of the oligos designed to MAFA antisense BM127748. Bars denoted as CUR-1207, CUR-1209, CUR-1208, CUR-1210 and CUR-1211 correspond to samples treated with SEQ ID NOS: 32 to 36 respectively.

FIG. 4 is a graph of real time PCR results showing the fold change+standard deviation in PDX1 mRNA after treatment of HepG2 cells with phosphorothioate oligonucleotides introduced using Lipofectamine 2000, as compared to control. Real time PCR results show that the levels of PDX1 mRNA are significantly increased in HepG2 cells 48 h after treatment with two of the oligos designed to PDX1 antisense Hs.416201. Bars denoted as CUR-1388, CUR-1389, CUR-1390, CUR-1391 and CUR-1392 correspond to samples treated with SEQ ID NOS: 37 to 41 respectively.

FIG. **5** is a graph of real time PCR results showing the fold change+standard deviation in NKX6-1 mRNA after treatment of MCF-7 cells with phosphorothioate oligonucleotides introduced using Lipofectamine 2000, as compared to control. Bars denoted as CUR-1501 to CUR-1504 correspond to samples treated with SEQ ID NOS: 42 to 45 respectively.

SEQUENCE LISTING DESCRIPTION

SEQ ID NO: 1: Homo sapiens neurogenic differentiation 1 (NEUROD1), mRNA (NCBI Accession No.: NM_002500). SEQ ID NO: 2: Homo sapiens hepatocyte nuclear factor 4, alpha (HNF4A), transcript variant 2, mRNA (NCBI Accession No.: NM 000457). SEQ ID NO: 3: Homo sapiens 40 v-maf musculoaponeurotic fibrosarcoma oncogene homolog A (avian) (MAFA), mRNA (NCBI Accession No.: NM_201589). SEQ ID NO: 4: Homo sapiens pancreatic and duodenal homeobox 1 (PDX1), mRNA (NCBI Accession No.: NM_000209). SEQ ID NO: 5: Homo sapiens NK6 45 homobox 1 (NKX6-1), mRNA, (NCBI Accession No.: NM_006168). SEQ ID NOs: 6 to 12: SEQ ID NO: 6: Natural NEUROD1 antisense sequence (Steedo.aApr07): SEQ ID NO: 7: Natural HNF4A antisense sequence (AF143870): SEQ ID NO: 8: Natural HNF4A antisense sequence 50 (BC071794). SEQ ID NO: 9: Natural HNF4A antisense sequence (BX099913): SEQ ID NO: 10: Natural MAFA antisense sequence (BM127748); SEQ ID NO: 11: Natural PDX1 antisense sequence (Hs.416201) and SEQ ID NO: 12: Natural NKX6-1 antisense sequence (torsnaby.aApr07-unspliced) 55 SEQ ID NOs: 13 to 45; Antisense oligonucleotides, * indicates phosphothioate bond.

DETAILED DESCRIPTION

Several aspects of the invention are described below with reference to example applications for illustration. It should be understood that numerous specific details, relationships, and methods are set forth to provide a full understanding of the invention. One having ordinary skill in the relevant art, however, will readily recognize that the invention can be practiced without one or more of the specific details or with other

4

methods. The present invention is not limited by the ordering of acts or events, as some acts may occur in different orders and/or concurrently with other acts or events. Furthermore, not all illustrated acts or events are required to implement a methodology in accordance with the present invention.

All genes, gene names, and gene products disclosed herein are intended to correspond to homologs from any species for which the compositions and methods disclosed herein are applicable. Thus, the terms include, but are not limited to genes and gene products from humans and mice. It is understood that when a gene or gene product from a particular species is disclosed, this disclosure is intended to be exemplary only, and is not to be interpreted as a limitation unless the context in which it appears clearly indicates. Thus, for example, for the genes disclosed herein, which in some embodiments relate to mammalian nucleic acid and amino acid sequences are intended to encompass homologous and/ or orthologous genes and gene products from other animals including, but not limited to other mammals, fish, amphibians, reptiles, and birds. In embodiments, the genes or nucleic acid sequences are human.

Definitions

The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms "a", "an" and "the" are intended to include the plural forms as well, unless the context clearly indicates otherwise. Furthermore, to the extent that the terms "including", "includes", "having", "has", "with", or variants thereof are used in either the detailed description and/or the claims, such terms are intended to be inclusive in a manner similar to the term "comprising."

The term "about" or "approximately" means within an acceptable error range for the particular value as determined by one of ordinary skill in the art, which will depend in part on how the value is measured or determined, i.e., the limitations of the measurement system. For example, "about" can mean within 1 or more than 1 standard deviation, per the practice in the art. Alternatively, "about" can mean a range of up to 20%, preferably up to 10%, more preferably up to 5%, and more preferably still up to 1% of a given value. Alternatively, particularly with respect to biological systems or processes, the term can mean within an order of magnitude, preferably within 5-fold, and more preferably within 2-fold, of a value. Where particular values are described in the application and claims, unless otherwise stated the term "about" meaning within an acceptable error range for the particular value should be assumed.

As used herein, the term "mRNA" means the presently known mRNA transcript(s) of a targeted gene, and any further transcripts which may be elucidated.

By "antisense oligonucleotides" or "antisense compound" is meant an RNA or DNA molecule that binds to another RNA or DNA (target RNA, DNA). For example, if it is an RNA oligonucleotide it binds to another RNA target by means of RNA-RNA interactions and alters the activity of the target RNA. An antisense oligonucleotide can upregulate or downregulate expression and/or fiction of a particular polynucleotide. The definition is meant to include any foreign RNA or DNA molecule which is useful from a therapeutic, diagnostic, or other viewpoint. Such molecules include, for example, antisense RNA or DNA molecules, interference RNA (RNAi), micro RNA, decoy RNA molecules, siRNA, enzymatic RNA, therapeutic editing RNA, and agonist and antagonist RNA, antisense oligomeric compounds, antisense oligonucleotides external guide sequence (EGS) oligonucleotides, alternate splicers, primers, probes, and other oligo-

meric compounds that hybridize to at least a portion of the target nucleic acid. As such, these compounds may be introduced in the form of single-stranded, double-stranded, partially single-stranded, or circular oligomeric compounds.

In the context of this invention, the term "oligonucleotide" refers to an oligomer or polymer of ribonucleic acid (RNA) or deoxyribonucleic acid (DNA) or mimetics thereof. The term "oligonucleotide", also includes linear or circular oligomers of natural and/or modified monomers or linkages, including deoxyribonucleosides, ribonucleosides, substituted and 10 alpha-anomeric forms thereof, peptide nucleic acids (PNA), locked nucleic acids (LNA), phosphorothioate, methylphosphonate, and the like. Oligonuclotides are capable of specifically binding to a target polynucleotide by way of a regular pattern of monomer-to-monomer interactions, such as Watson-Crick type of base pairing, Hoögsteen or reverse Hoögsteen types of base pairing, or the like.

The oligonucleotide may be "chimeric", that is, composed of different regions. In the context of this invention "chimeric" compounds are oligonucleotides, which contain two 20 or more chemical regions, for example, DNA region(s), RNA region(s), PNA region(s) etc. Each chemical region is made up of at least one monomer unit, i.e., a nucleotide in the case of an oligonucleotides compound. These oligonucleotides typically comprise at least one region wherein the oligonucle- 25 otide is modified in order to exhibit one or more desired properties. The desired properties of the oligonucleotide include, but are not limited, for example, to increased resistance to nuclease degradation, increased cellular uptake, and/ or increased binding affinity for the target nucleic acid. Dif- 30 ferent regions of the oligonucleotide may therefore have different properties. The chimeric oligonucleotides of the present invention can be formed as mixed structures of two or more oligonucleotides, modified oligonucleotides, oligonucleosides and/or oligonucleotide analogs as described 35

The oligonucleotide can be composed of regions that can be linked in "register" that is, when the monomers are linked consecutively, as in native DNA, or linked via spacers. The spacers are intended to constitute a covalent "bridge" 40 between the regions and have in cases a length not exceeding about 100 carbon atoms. The spacers may carry different functionalities, for example, having positive or negative charge, carry special nucleic acid binding properties (intercalators, groove binders, toxins, fluorophors etc.), being lipophilic, inducing special secondary structures like, for example, alanine containing peptides that induce alpha-helices.

As used herein "Pancreatic Developmental genes" and "Pancreatic Developmental gene" are Inclusive of all family 50 members, mutants, alleles, fragments, species, coding and noncoding sequences, sense and antisense polynucleotide strands etc.

As used herein, the words 'Neurogenic differentiation 1', 'Neurogenic differentiation factor 1', NEUROD1, BETA2, 55 BHF-1, bHLHa3, NeuroD, NEUROD, NeuroD1, are considered the same in the literature and are used interchangeably in the present application.

As used herein, the words Hepatocyte nuclear factor 4, alpha; Hepatocyte nuclear factor 4.alpha.; HNF4.alpha.; 60 HNF4A, HNF-4alpha, MODY, MODY1, NR2A1, NR2A21, TCF, TCF14, Transcription factor-14, APF, LFB1 and HP1 are considered the same in the literature and are used interchangeably in the present application.

As used herein, the words 'v-maf musculoaponeurotic fib- 65 rosarcoma oncogene homolog A', MAFA, hMafA, v-maf, mafA, Pancreatic beta-cell-specific transcriptional activator,

6

RIPE3b1, Transcription factor MafA, Transcription factor RIPE3b1, V-maf musculoaponeurotic fibrosarcoma oncogene homolog A (avian), are considered the same in the literature and are used interchangeably in the present application.

As used herein, the words 'Pancreatic and duodenal homeobox 1', PDX1, PDX-1, Glucose-sensitive factor, GSF, IDX-1, Insulin promoter factor 1, Insulin upstream factor 1, IPF1, IPF-1, Islet/duodenum homeobox-1, IUF1, IUF-1, MODY4, Pancreas/duodenum homeobox protein 1, Somatostatin-transactivating factor 1, STF-1 are considered the same in the literature and are used interchangeably in the present application.

As used herein, the words NK6 homeobox 1, NKX6-1, Homeobox protein NK-6 homolog A, Homeobox protein Nkx-6.1, Nkx6.1, NKX6.1 and NKX6A are considered the same in the literature and are used interchangeably in the present application.

As used herein, the term "oligonucleotide specific for" or "oligonucleotide which targets" refers to an oligonucletide having a sequence (i) capable of forming a stable complex with a portion of the targeted gene, or (ii) capable of forming a stable duplex with a portion of a mRNA transcript of the targeted gene. Stability of the complexes and duplexes can be determined by theoretical calculations and/or in vitro assays. Exemplary assays for determining stability of hybridization complexes and duplexes are described in the Examples below.

As used herein, the term "target nucleic acid" encompasses DNA, RNA (comprising premRNA and mRNA) transcribed from such DNA, and also cDNA derived from such RNA, coding, noncoding sequences, sense or antisense polynucleotides. The specific hybridization of an oligomeric compound with its target nucleic acid interferes with the normal function of the nucleic acid. This modulation of function of a target nucleic acid by compounds, which specifically hybridize to it, is generally referred to as "antisense". The functions of DNA to be interfered include, for example, replication and transcription. The functions of RNA to be interfered, include all vital functions such as, for example, translocation of the RNA to the site of protein translation, translation of protein from the RNA, splicing of the RNA to yield one or more mRNA species, and catalytic activity which may be engaged in or facilitated by the RNA. The overall effect of such interference with target nucleic acid function is modulation of the expression of an encoded product or oligonucleotides.

RNA interference "RNAi" is mediated by double stranded RNA (dsRNA) molecules that have sequence-specific homology to their "target" nucleic acid sequences. In certain embodiments of the present invention, the mediators are 5-25 nucleotide "small interfering" RNA duplexes (siRNAs). The siRNAs are derived from the processing of dsRNA by an RNase enzyme known as Dicer siRNA duplex products are recruited into a multi-protein siRNA complex termed RISC (RNA Induced Silencing Complex). Without wishing to be bound by any particular theory, a RISC is then believed to be guided to a target nucleic acid (suitably mRNA), where the siRNA duplex interacts in a sequence-specific way to mediate cleavage in a catalytic fashion. Small interfering RNAs that can be used in accordance with the present invention can be synthesized and used according to procedures that are well known in the art and that will be familiar to the ordinarily skilled artisan. Small interfering RNAs for use in the methods of the present invention suitably comprise between about 1 to about 50 nucleotides (nt). In examples of non limiting embodiments, siRNAs can comprise about 5 to about 40 nt,

about 5 to about 30 nt, about 10 to about 30 nt, about 15 to about 25 nt, or about 20-25 nucleotides.

Selection of appropriate oligonuclotides is facilitated by using computer programs that automatically align nucleic acid sequences and indicate regions of identity or homology. 5 Such programs are used to compare nucleic acid sequences obtained, for example, by searching databases such as Genbank or by sequencing PCR products. Comparison of nucleic acid sequences from a range of species allows the selection of nucleic acid sequences that display an appropriate degree of identity between species. In the case of genes that have not been sequenced, Southern blots are performed to allow a determination of the degree of identity between genes in target species and other species. By performing Southern blots at varying degrees of stringency, as is well known in the art, it is possible to obtain an approximate measure of identity. These procedures allow the selection of oligonucleotides that exhibit a high degree of complementarity to target nucleic acid sequences in a subject to be controlled and a lower degree of complementarity to corresponding nucleic acid sequences 20 in other species. One skilled in the art will realize that there is considerable latitude in selecting appropriate regions of genes for use in the present invention.

By "enzymatic RNA" is meant an RNA molecule with enzymatic activity. Enzymatic nucleic acids (ribozymes) act 25 by first binding to a target RNA. Such binding occurs through the target binding portion of an enzymatic nucleic acid which is held in close proximity to an enzymatic portion of the molecule that acts to cleave the target RNA. Thus, the enzymatic nucleic acid first recognizes and then binds a target 30 RNA through base pairing, and once bound to the correct site, acts enzymatically to cut the target RNA.

By "decoy RNA" is meant an RNA molecule that mimics the natural binding domain for a ligand. The decoy RNA therefore competes with natural binding target for the binding 35 of a specific ligand. For example, it has been shown that over-expression of HIV trans-activation response (TAR) RNA can act as a "decoy" and efficiently binds HIV eat protein, thereby preventing it from binding to TAR sequences encoded in the HIV RNA. This is meant to be a specific 40 example. Those in the art will recognize that this is but one example, and other embodiments can be readily generated using techniques generally known in the art.

As used herein, the term "monomers" typically indicates monomers linked by phosphodiester bonds or analogs thereof 45 to form oligonucleotides ranging in size from a few monomeric units, e.g., from about 3-4, to about several hundreds of monomeric units. Analogs of phosphodiester linkages include: phosphorothioate, phosphorodithioate, methylphosphomates, phosphoroselenoate, phosphoramidate, and the 50 like, as more fully described below.

The term "nucleotide" covers naturally occurring nucleotides as well as nonnaturally occurring nucleotides. It should be clear to the person skilled in the art that various nucleotides which previously have been considered "non-naturally occur-55" ring" have subsequently been found in nature. Thus, "nucleotides" includes not only the known purine and pyrimidine heterocycles-containing molecules, but also heterocyclic analogues and tautomers thereof. Illustrative examples of other types of nucleotides are molecules containing adenine, 60 guanine, thymine, cytosine, uracil, purine, xanthine, diaminopurine, 8-oxo-N6-methyladenine, 7-deazaxanthine, 7-deazaguanine, N4,N4-ethanocytosin, N6,N6-ethano-2,6-diaminopurine, 5-methylcytosine, 5-(C3-C6)-alkynylcytosine, 5-fluorouracil, 5-bromouracil, pseudoisocytosine, 2-hy- 65 droxy-5-methyl-4-triazolopyridin, isocytosine, isoguanin, inosine and the "non-naturally occurring" nucleotides

8

described in U.S. Pat. No. 5,432,272. The term "nucleotide" is intended to cover every and all of these examples as well as analogues and tautomers thereof. Especially interesting nucleotides are those containing adenine, guanine, thymine, cytosine, and uracil, which are considered as the naturally occurring nucleotides in relation to therapeutic and diagnostic application in humans. Nucleotides include the natural 2'-deoxy and 2'-hydroxyl sugars, e.g., as described in Kornberg and Baker, DNA Replication, 2nd Ed. (Freeman, San Francisco, 1992) as well as their analogs.

"Analogs" in reference to nucleotides includes synthetic nucleotides having modified base moieties and/or modified sugar moieties. Such analogs include synthetic nucleotides designed to enhance binding properties, e.g., duplex or triplex stability, specificity, or the like.

As used herein, "hybridization" means the pairing of substantially complementary strands of oligomeric compounds. One mechanism of pairing involves hydrogen bonding, which may be Watson-Crick, Hoögsteen or reversed Hoögsteen hydrogen bonding, between complementary nucleoside or nucleotide hoses (nucleotides) of the strands of oligomeric compounds. For example, adenine and thymine are complementary nucleotides which pair through the formation of hydrogen bonds. Hybridization can occur under varying circumstances.

An antisense compound is "specifically hybridizable" when binding of the compound to the target nucleic acid interferes with the normal function of the target nucleic acid to cause a modulation of function and/or activity, and there is a sufficient degree of complementarity to avoid non-specific binding of the antisense compound to non-target nucleic acid sequences under conditions in which specific binding is desired, i.e., under physiological conditions in the case of in vivo assays or therapeutic treatment, and under conditions in which assays are performed in the case of in vitro assays.

As used herein, the phrase "string nt hybridization conditions" or "stringent conditions" refers to conditions under which a compound of the invention will hybridize to its target sequence, but to a minimal number of other sequences. Stringent conditions are sequence-dependent and will be different in different circumstances and in the context of this invention, "stringent conditions" under which oligomeric compounds hybridize to a target sequence are determined by the nature and composition of the oligomeric compounds and the assays in which they are being investigated. In general, stringent hybridization conditions comprise low concentrations (<0.15M) of salts with inorganic cations such as Na++ or K++ (i.e., low ionic strength), temperature higher than 20° C.-25° C. below the Tm of the oligomeric compound target sequence complex, and the presence of denaturants such as formamide, dimethylformamide, dimethyl sulfoxide, or the detergent sodium dodecyl sulfate (SDS). For example, the hybridization rate decreases 1.1% for each 1% formamide. An example of a high stringency hybridization condition is 0.1× sodium chloride-sodium citrate buffer (SSC)/0.1% (w/v) SDS at 60° C. for 30 minutes.

"Complementary," as used herein, refers to the capacity for precise pairing between two nucleotides on one or two oligomeric strands. For example, if a nucleobase at a certain position of an antisense compound is capable of hydrogen bonding with a nucleobase at a certain position of a target nucleic acid, said target nucleic acid being a DNA, RNA, or oligonucleotide molecule, then the position of hydrogen bonding between the oligonucleotide and the target nucleic acid is considered to be a complementary position. The oligomeric compound and the further DNA, RNA, or oligonucleotide molecule are complementary to each other when a sufficient

number of complementary positions in each molecule are occupied by nucleotides which can hydrogen bond with each other. Thus, "specifically hybridizable" and "complementary" are terms which are used to indicate a sufficient degree of precise pairing or complementarity over a sufficient number of nucleotides such that stable and specific binding occurs between the oligomeric compound and a target nucleic acid.

It is understood in the art that the sequence of an oligomeric compound need not be 100% complementary to that of its target nucleic acid to be specifically hybridizable. Moreover, an oligonucleotide may hybridize over one or more segments such that intervening or adjacent segments are not involved in the hybridization event (e.g., a loop structure, mismatch or hairpin structure). The oligomeric compounds of the present invention comprise at least about 70%, or at least about 75%, 15 or at least about 80%, or at least about 85%, or at least about 90%, or at least about 95%, or at least about 99% sequence complementarity to a target region within the target nucleic acid sequence to which they are targeted. For example, an antisense compound in which 18 of 20 nucleotides of the 20 antisense compound are complementary to a target region, and would therefore specifically hybridize, would represent 90 percent complementarity. In this example, the remaining noncomplementary nucleotides may be clustered or interspersed with complementary nucleotides and need not be 25 contiguous to each other or to complementary nucleotides. As such, an antisense compound which is 18 nucleotides in length having 4 (four) noncomplementary nucleotides which are flanked by two regions of complete complementarity with the target nucleic acid would have 77.8% overall complementarity with the target nucleic acid and would thus fill within the scope of the present invention. Percent complementarity of an antisense compound with a region of a target nucleic acid can be determined routinely using BLAST programs (basic local alignment search tools) and PowerBLAST pro- 35 grams known in the art. Percent homology, sequence identity or complementarity, can be determined by, for example, the Gap program (Wisconsin Sequence Analysis Package, Version 8 for Unix, Genetics Computer Group, University Research Park, Madison Wis.), using default settings, which 40 uses the algorithm of Smith and Waterman (Adv. Appl. Math., (1981) 2, 482-489).

As used herein, the term "Thermal Melting Point (Tm)" refers to the temperature, under defined ionic strength, pH, and nucleic acid concentration, at which 50%, of the oligo-ucleotides complementary to the target sequence hybridize to the target sequence at equilibrium. Typically, stringent conditions will be those in which the salt concentration is at least about 0.01 to 1.0 M Na ion concentration (or other salts) at pH 7.0 to 8.3 and the temperature is at least about 30° C. for short oligonucleotides (e.g., 10 to 50 nucleotide). Stringent conditions may also be achieved with the addition of destabilizing agents such as formamide.

As used herein, "modulation" means either an increase (stimulation) or a decrease (inhibition) in the expression of a 55 gene.

The term "variant," when used in the context of a polynucleotide sequence, may encompass a polynucleotide sequence related to a wild type gene. This definition may also include, for example, "allelic," "splice," "species," or "polymorphic" variants. A splice variant may have significant identity to a reference molecule, but will generally have a greater or lesser number of polynucleotides due to alternate splicing of exons during mRNA processing. The corresponding polypeptide may possess additional functional domains or an absence of domains. Species variants are polynucleotide sequences that vary from one species to another. Of particular

10

utility in the invention are variants of wild type gene products. Variants may result from at least one mutation in the nucleic acid sequence and may result in altered mRNAs or in polypeptides whose structure or function may or may not be altered. Any given natural or recombinant gene may have none, one, or many allelic forms. Common mutational changes that give rise to variants are generally ascribed to natural deletions, additions, or substitutions of nucleotides. Each of these types of changes may occur alone, of in combination with the others, one or more times in a given sequence.

The resulting polypeptides generally will have significant amino acid identity relative to each other. A polymorphic variant is a variation in the polynucleotide sequence of a particular gene between individuals of a given species. Polymorphic variants also may encompass "single nucleotide polymorphisms" (SNPs) or single base mutations in which the polynucleotide sequence varies by one base. The presence of SNPs may be indicative of, for example, a certain population with a propensity for a disease state, that is susceptibility versus resistance.

Derivative polynucleotides include nucleic acids subjected to chemical modification, for example, replacement of hydrogen by an alkyl, acyl, or amino group. Derivatives, e.g., derivative oligonucleotides, may comprise non-naturally-occurring portions, such as altered sugar moieties or inter-sugar linkages. Exemplary among these are phosphorothioate and other sulfur containing species which are known in the art. Derivative nucleic acids may also contain labels, including radionucleotides, enzymes, fluorescent agents, chemiluminescent agents, chromogenic agents, substrates, cofactors, inhibitors, magnetic particles and the like.

A "derivative" polypeptide or peptide is one that is modified, for example, by glycosylation, pegylation, phosphorylation, sulfation, reduction/alkylation, acylation, chemical coupling, or mild formalin treatment. A derivative may also be modified to contain a detectable label, either directly or indirectly, including, but not limited to, a radioisotope, fluorescent, and enzyme label.

As used herein, the term "animal" or "patient" is meant to include, for example, humans, sheep, elks, deer, mule deer, minks, mammals, monkeys, horses, cattle pigs, goats, dogs, cats, rats, mice, birds, chicken, reptiles, fish, insects and arachnids.

"Mammal" covers warm blooded mammals that are typically under medical care (e.g., humans and domesticated animals). Examples include feline, canine, equine, bovine, and human, as well as just human.

"Treating" or "treatment" covers the treatment of a disease-state in a mammal, and includes: (a) preventing the disease-state from occurring in a mammal, in particular, when such mammal is predisposed to the disease-state but has not yet been diagnosed as having it; (b) inhibiting the disease-state, e.g., arresting it development; and/or (c) relieving the disease-state, e.g., causing regression of the disease state until a desired endpoint is reached. Treating also includes the amelioration of a symptom of a disease (e.g., lessen the pain or discomfort), wherein such amelioration may or may not be directly affecting the disease (e.g., cause, transmission, expression, etc.).

As used herein, "cancer" refers to all types of cancer or neoplasm or malignant tumors found in mammals, including, but not limited to: leukemias, lymphomas, melanomas, carcinomas and sarcomas. The cancer manifests itself as a "tumor" or tissue comprising malignant cells of the cancer Examples of tumors include sarcomas and carcinomas such as, but not limited to: fibrosarcoma, myxosarcoma, liposar-

coma, chondrosarcoma, osteogenic sarcoma, chordoma, angiosarcoma, endotheliosarcoma, lymphangiosarcoma, lymphangioendotheliosarcoma, synovioma, mesothelioma Ewing's tumor, leiomyosarcoma, rhabdomyosarcoma, colon carcinoma, pancreatic cancer, breast cancer, ovarian cancer, 5 prostate cancer, squamous cell carcinoma, basal cell carcinoma, adenocarcinoma, sweat gland carcinoma, sebaceous gland carcinoma, papillary carcinoma, papillary adenocarcinomas, cystadenocarcinoma, medullary carcinoma, bronchogenic carcinoma, renal cell carcinoma, hepatoma, bile 10 duct carcinoma, choriocarcinoma, seminoma embryonal carcinoma, Wilms' tumor, cervical cancer, testicular tumor, lung carcinoma, small cell lung carcinoma, bladder carcinoma, epithelial carcinoma, glioma, astrocytoma, medulloblastoma, craniopharyngioma, ependymoma, pinealoma, heman- 15 gioblastoma, acoustic neuroma, oligodendroglioma, meningioma, melanoma, neuroblastoma, and retinoblastoma. Additional cancers which can be reared by the disclosed composition according to the invention include but not limited to, for example, Hodgkin's Disease, Non-Hodgkin's 20 Lymphoma, multiple myeloma, neuroblastoma, breast cancer, ovarian cancer, lung cancer, rhabdomyosarcoma, primary thrombocytosis, primary macroglobulinemia, smallcell lung tumors, primary brain rumors, stomach cancer, colon cancer, malignant pancreatic insulinoma, malignant 25 carcinoid, urinary bladder cancer, premalignant skin lesions, testicular cancer, lymphomas, thyroid cancer, neuroblastoma, esophageal cancer, genitourinary tract cancer, malignant hypercalcemia, cervical cancer, endometrial cancer, adrenal cortical cancer, and prostate cancer.

"Neurological disease or disorder" refers to any disease or disorder of the nervous system and/or visual system. "Neurological disease or disorder" include disease or disorders that involve the central nervous system (brain, brainstem and cerebellum), the peripheral nervous system (including cranial 35 nerves), and the autonomic nervous system (parts of which are located in both central and peripheral nervous system). Examples of neurological disorders include but are not limited to, headache, stupor and coma, dementia, seizure, sleep disorders, trauma, infections, neoplasms, neuroophthalmol- 40 ogy, movement disorders, demyelinating diseases, spinal cord disorders, and disorders of peripheral nerves, muscle and neuromuscular junctions. Addiction and mental illness, include, but are not limited to, bipolar disorder and schizophrenia, are also included in the definition of neurological 45 disorder. The following is a list of several neurological disorders, symptoms, signs and syndromes that can be treated using compositions and methods according to the present invention: acquired epileptiform aphasia; acute disseminated encephalomyelitis; adrenoleukodystrophy; age-related 50 macular degeneration; agenesis of the corpus callosum; agnosia; Aicardi syndrome; Alexander disease; Alpers' disease; alternating hemiplegia; Vascular dementia; amyotrophic lateral sclerosis; anencephaly; Angelman syndrome; angiomatosis; anoxia; aphasia; apraxia; arachnoid cysts; orachnoidi- 55 Anronl-Chiari malformation; arteriovenous malformation; Asperger syndrome; ataxia telegiectasia; attention deficit hyper activity disorder; autism; autonomic dysfunction; back pain; Batten disease; Behcet's disease; Bell's palsy; benign essential blepharospasm; benign focal; 60 amyotrophy; benign intracranial hypertension; Binswanger's disease; blepharospasm; Bloch Sulzberger syndrome; brachial plexus injury; brain abscess; brain injury; brain tumors (including glioblastoma multiforme); spinal tumor; Brown-Sequard syndrome; Canavan disease; carpal tunnel syndrome; causalgia; central pain syndrome; central pontine myelinolysis; cephalic disorder; cerebral aneurysm; cerebral

12

arteriosclerosis; cerebral atrophy; cerebral gigantism; cerebral palsy; Charcot-Marie-Tooth disease; chemotherapy-induced neuropathy and neuropathic pain; Chiari malformation; chorea; chronic inflammatory demyelinating polyneuropathy; chronic pain; chronic regional pain syndrome; Coffin Lowry syndrome; coma, including persistent vegetative state; congenital facial diplegia; corticobasal degeneration; cranial arteritis; craniosynostosis; Creutzfeldt-Jakob disease; cumulative trauma disorders; Cushing's syndrome; cytomegalic inclusion body disease; cytomegalovirus infection; dancing eyes-dancing feet syndrome; Dandy Walker syndrome; Dawson disease; De Mosier's syndrome; Dejerine-Klumke palsy; dementia, dermatomyositis; diabetic neuropathy; diffuse sclerosis; dysautonomia; dysgraphia; dyslexia; dystonias; early infantile epileptic encephalopathy; empty sella syndrome; encephalitis; encephaloceles; encephalotrigeminal angiomatosis; epilepsy; Erb's palsy; essential tremor; Fabry's disease; Fahr's syndrome; fainting; familial spastic paralysis; febrile seizures; Fisher syndrome; Friedreich's ataxia: fronto-temporal dementia and other "tauopathies"; Gaucher's disease; Gerstmann's syndrome; giant cell ateritis; giant cell inclusion disease; globoid cell leukodystrophy; Guillain-Barre syndrome; HTLV-1-associated myelopathy; Hallervorden-Spatz disease; head injury headache; hemifacial spasm; hereditary spastic paraplegia; heredopathia atactic a polyneuriformis; herpes zoster oticus; herpes zoster; Hirayama syndrome; HIV associated dementia and neuropathy (also neurological manifestations of AIDS); holoprosencephaly; Huntington's disease and other polyglutamine repeat diseases; hydranencephaly; hydrocephalus; hypercortisolism; hypoxia; immune-mediated encephalomyelitis; inclusion body myositis; incontinentia pigmenti; infantile phytanic acid storage disease; infantile refsum disease; infantile spasms; inflammatory myopathy; intracranial cyst; intracranial hypertension; Joubert syndrome; Kearns-Sayre syndrome; Kennedy disease Kinsbourne syndrome; Klippel Feil syndrome; Krabbe disease; Kugelberg-Welander disease; kuru; Lafora disease; Lambert-Eaton myasthenic syndrome; Landau-Kleffner syndrome; lateral medullary (Wallenberg) syndrome; learning disabilities; Leigh's disease; Lennox-Gustaut syndrome; Lesch-Nyhan syndrome; leukodystrophy; Lewy body dementia; Lissencephaly; locked-in syndrome; Lou Gehrig's disease (i.e., motor neuron disease or amyotrophic lateral sclerosis); lumbar disc disease; Lyme disease-neurological sequelae; Machado-Joseph disease; macrencephaly; megalencephaly; Melkersson-Rosenthal syndrome; Meniers disease; meningitis; Menkes disease; metachromatic leukodystrophy; microencephaly; migraine; Miller Fisher syndrome; mini-strokes; mitochondrial myopathies; Mobius syndrome; monomelic amyotrophy; motor neuron disease; Moyamoya disease; mucopolysaccharidoss; multi-infarct dementia; multifocal motor neuropathy; multiple sclerosis and other demyelinating disorders; multiple system atrophy with postural hypotension; p muscular dystrophy; myasthenia gravis; myelinoclastic diffuse sclerosis; myoclonic encephalopathy of infants; myoclonus; myopathy; myotonia congenital; narcolepsy; neurofibromatosis; neuroleptic malignant syndrome; neurological manifestations of AIDS; neurological sequelae of lupus; neuromyotonia; neuronal ceroid lipofuscinosis; neuronal migration dis-Niemann-Pick disease; O'Sullivan-McLeod syndrome; occipital neuralgia; occult spinal dysraphism sequence; Ohtahara syndrome; olivopontocerebellar atrophy; opsoclonus myoclonus; optic neuritis; orthostatic hypotension; overuse syndrome; paresthesia; Neurodegenerative disease or disorder (Parkinson's disease, Huntington's disease, Alzheimer's disease, amyotophic lateral sclerosis (ALS),

dementia, multiple sclerosis and other diseases and disorders associated with neuronal cell death): paramyotonia congenital; paraneoplastic diseases; paroxysmal attacks; Parry Romberg syndrome; Pelizaeus-Merzbacher disease; periodic paralyses; peripheral neuropathy; painful neuropathy and 5 neuropathic pain; persistent vegetative state; pervasive developmental disorders; photic sneeze reflex; phytanic acid storage disease; Pick's disease; pinched nerve; pituitary tumors; polymyositis; porencephaly; post-polio syndrome; postherpetic neuralgia; post infectious encephalomyelitis; postural 10 hypotension; Prader-Willi syndrome; primary lateral sclerosis; prion diseases; progressive hemifacial atrophy; progressive multifocalleukoencephalopathy; progressive sclerosing poliodystrophy; progressive supranuclear palsy; pseudotumor cerebri, Ramsay-Hunt syndrome (types I and II); Ras- 15 mussen's encephalitis; reflex sympathetic dystrophy syndrome; Refsum disease; repetitive motion disorders; repetitive stress injuries; restless legs syndrome; retrovirusassociated myelopathy; Rett syndrome; Reye's syndrome; Saint Vitus dance: Sandhoff disease: Schilder's disease: schi- 20 zencephaly; septo-optic dysplasia; shaken baby syndrome; shingles; Shy-Drager syndrome; Sjogren's syndrome; sleep apnea; Soto's syndrome; spasticity; spina bifida; spinal cord injury; spinal cord tumors; spinal muscular atrophy; Stiff-Person syndrome; stroke; Sturge-Weber syndrome; subacute 25 sclerosing panencephalitis; subcortical arteriosclerotic encephalopathy; Sydenham chorea; syncope; syringomyelia; tardive dyskinesia; Tay-Sachs disease; temporal arteritis; tethered spinal cord syndrome; Thomsen disease; thoracic outlet syndrome; Tic Douloureux; Todd's paralysis; Tourette 30 syndrome; transit ischemic attack; transmissible spongiform encephalopathies; transverse myelitis; traumatic brain injury; tremor; trigeminal neuralgia; tropical spastic paraparesis; tuberous sclerosis; vascular dementia (multi-infarct dementia); vasculitis including temporal arteritis; Von Hippel- 35 Lindau disease: Waltennberg's syndrome: Werdnig-Hoffman disease; West syndrome; whiplash; Williams syndrome; Wildon's disease; and Zellweger syndrome.

An "Inflammation" refers to systemic inflammatory conditions and conditions associated locally with migration and 40 attraction of monocytes, leukocytes and/or neutrophils. Examples of inflammation include, but are not limited to, inflammation resulting from infection with pathogenic organisms (including gram-positive bacteria, gram-negative bacteria, viruses, fungi, and parasites such as protozoa and helm- 45 inths), transplant rejection (including rejection of solid organs such as kidney, liver, heart, lung or cornea, as well as rejection of bone marrow transplants including graft-versushost disease (GVHD)), or from localized chronic or acute autoimmune or allergic reactions. Autoimmune diseases 50 include acute glomerulonephritis; rheumatoid or reactive arthritis; chronic glomerulonephritis inflammatory bowel diseases such as Crohn's disease, ulcerative colitis and necrotizing enterocolitis; granulocyte transfusion associated syndromes; inflammatory dermatoses such as contact dermatitis, 55 atopic dermatitis, psoriasis; systemic lupus erythematosus (SLE), autoimmune thyroiditis, multiple sclerosis, and some forms of diabetes, or any other autoimmune state where attack by the subject's own immune system results in pathologic tissue destruction. Allergic reactions include allergic 60 asthma, chronic bronchitis, acute and delayed hypersensitivity. Systemic inflammatory disease states include inflammation associated with trauma, burns, reperfusion following ischemic events (e.g. thrombotic events in heart brain, intestines or peripheral vasculature, including myocardial infarc- 65 tion and stroke), sepsis, ARDS or multiple organ dysfunction syndrome. Inflammatory cell recruitment also occurs in ath14

erosclerotic plaques. Inflammation includes, but is nor limited to, Non-Hodgkin's lymphoma, Wegener's granulomatosis, Hashimoto's thyroiditis, hepatocellular carcinoma, thymus atrophy, chronic pancreatitis, rheumatoid arthritis, reactive lymphoid hyperplasia, osteoarthritis, ulcerative colitis, papillary carcinoma, Crohn's disease, ulcerative colitis, acute cholecystitis, chronic cholecystitis, cirrhosis, chronic sialadenitis, peritonitis, acute pancreatitis, chronic Gastritis, adenomyosis, endometriosis, acute cervicitis, chronic cervicitis, lymphoid hyperplasia, multiple sclerosis, hypertrophy secondary to idiopathic thrombocytopenic purpura, primary IgA nephropathy, systemic lupus erythamatosus, psoriasis, pulmonary emphysema, chronic pyelonephritis, and chronic cystitis.

A cardiovascular disease or disorder includes those disorders that can either cause ischemia or are caused by reperfusion of the heart. Examples include, but are not limited to, atherosclerosis, coronary artery disease, granulomatous myocarditis, chronic myocarditis (non-granulomatous), primary hypertrophic cardiomyopathy, peripheral artery disease (PAD), stroke, angina pectoris, myocardial infarction, cardiovascular tissue damage caused by cardiac arrest, cardiovascular tissue damage caused by cardiac bypass, cardiogenic shock, and related conditions that would be known by those of ordinary skill in the art or which involve dysfunction of or tissue damage to the heart or vasculature, especially, but not limited to, tissue damage related to a Pancreatic Developmental gene activation. CVS diseases include, but are not limited to, atherosclerosis, granulomatous myocarditis, myocardial infarction, myocardial fibrosis secondary to valvular heart disease, myocardial fibrosis without infarction, primary hypertrophic cardiomyopathy, and chronic myocarditis (nongranulomatous).

A "Metabolic disease or disorder" refers to a wide range of diseases and disorders of the endocrine system including, for example, insulin resistance, diabetes, obesity, impaired glucose tolerance, high blood cholesterol, hyperglycemia, hyperinsulinemia, dyslipidemia and hyperlipidemia.

Polynucleotide and Oligonucleotide Compositions and Molecules

Targets

In one embodiment, the targets comprise nucleic acid sequences of a Pancreatic Developmental gene, including without limitation sense and/or antisense noncoding and/or coding sequences associated with a Pancreatic Developmental gene.

In one embodiment, the targets comprise nucleic acid sequences of NEUROD1, including without limitation sense and/or antisense noncoding and/or coding sequences associated with NEUROD1 gene.

In one embodiment, the targets comprise nucleic acid sequences of HNF4A, including without limitation sense and/or antisense noncoding and/or coding sequences associated with HNF4A gene.

In one embodiment, the targets comprise nucleic acid sequences of MAFA, including without limitation sense and/ or antisense noncoding and/or coding sequences associated with MAFA gene.

In one embodiment, the targets comprise nucleic acid sequences of PDX1, including without limitation sense and/ or antisense noncoding and/or coding sequences associated with PDX1 gene.

In one embodiment, the targets comprise nucleic acid sequences of NKX6, including without limitation sense and/ or antisense noncoding and/or coding sequences associated with NKX6 gene.

BETA2/NeuroD1 is a tissue-specific basic helix-loop-helix transcription factor with ability to up-regulate insulin gene expression. NeuroD1/BETA2 is a key regulator of pancreatic islet morphogenesis and insulin hormone gene transcription in islet beta cells. It was cloned as a gene required for neuronal differentiation, named NeuroD; we now refer to the gene as BETA2/NeuroD1. Like many bHLH family members that play important roles in regulating various developmental systems, BETA2/NeuroD1 is essential for development of the pancreas and brain.

HNF4A encodes a transcription factor with an important role in hepatocyte and pancreatic transcriptional regulation. An orphan nuclear receptor and hepatic activator, hepatic nuclear factor-4 (HNF-4), is a central regulator of transcriptional networks in the liver and pancreatic β -cells. The two promoters. P1 and P2, are located 45.5 kb apart on chromosome 20q. While HNF4A transcripts in the liver are primarily of P1 origin, the P2 promoter drives expression in the pancreas, where it regulates genes involved in insulin secretion and glucose homeostasis.

MAFA is the β -cell-specific nuclear factor bound to a conserved cis-regulatory element called RIPE3b1 in the insulin gene enhancer region and functions as an important transactivator for the insulin gene. MAFA is a basic-leucine zipper (bLZ) transcription factor that controls β -cell-specific expression of the insulin gene through a cis-regulatory element called RIPE3b1 and functions as potent transactivator of insulin gene. MAFA cooperates synergistically with NEU-ROD1 and PDX1. Phosphorylation by GSK3 increases its transcriptional activity and is required for its oncogenic activity.

Pancreatic-duodenal homeobox 1(PDX1) is a transcription factor of homeobox genes family important in differentiation and development of the pancreas, duodenum and antrum. Pancreatic duodenal homeobox 1 (PDX-1) is a transcription factor with a critical role in pancreatic development. PDX-1 regulates pancreatic cell proliferation and differentiation, and increased expression of this transcription factor has been described in human Pancreatic adenocarcinoma and cell lines. Pdx1 is also necessary for β -cell maturation: developing β -cells co-express Pdx1, Nkx6-1, and insulin, a process that results in the silencing of MafB and the expression of MafA, a necessary switch in maturation of β -cells. Pdx 1 appears to also play a role in the fatting of endocrine cells,

16

encoding for insulin and somatostatin, two pancreatic endocrine products, while repressing glucagon. Thus, Pdx1 expression apparently favors the production of insulin+ β -cells and somatostatin+ Δ -cells rather than glucagon+ α -cells.

Nkx6.1 is recognized as the most beta-cell specific transcription factor in the pancreas. Nkx6 homeodomain transcription factors have important developmental roles in the CNS and the pancreas. Nkx1 is essential for proper motoneuron and oligodendrocyte development and the development and maintenance of insulin-producing pancreatic beta cells.

Nkx-6.1 is expressed in ventral neural progenitor cells and subsequently in the median half of the lateral motor neuron column (LMCm) and in mesenchymal tissues surrounding Shh-expressing cells; ventral spinal meninges, esophageal mesenchyme, and dorsal tracheal mesenchyme. Nkx6.1 is required for ventral regional patterning and neuronal fate determination in the vertebrate CNS. Nkx6.1 controls motor neuron and ventral interneuron fates Nkx6.1 controls migration and axon pathfinding of cranial branchio-motoneurons and it is required for the early specification of somatic motoneuron progenitors in the spinal cord. Early specification of branchio-motoneurons (hindbrain) is independent of Nkx6.1 function, but it is required for their subsequent development. Nkx6.1 is required for the development of postmitotic motoneurons, and the control of branchio-motoneuron migration. The status of Nkx6.1 expression in certain motor neuron pools regulates muscle nerve formation, and the pattern of innervation of individual muscles.

Table 1 shows a list of some Pancreatic Developmental genes

It should be appreciated that in the Table 1 below, an indicated gene means the gene and all currently known variants thereof, including the different mRNA transcripts that the gene and its variants can give rise to, any further gene variants which may be elucidated, and antisense sequences. The list also includes the non-coding RNA molecules or the portions of polynucleotides. In general, however, such variants will have significant sequence identity to a sequence of any polynucleotide in Table 1 below, e.g., a variant will have at least about 70 percent sequence identity to a sequence of the Table 1 below, typically as least about 75, 80, 85, 90, 95, 97, 98 or 99 percent sequence identity to a sequence of the below Table 1. Sequence identity of variant can be determined by any number of standard techniques such as BLAST program (ncbi.nclm.nih.gov/blast/).

TABLE 1

Gene Symbol	Accession Number	Function
VEGFA	NM_001025366	Induces angiogenesis, vasculogenesis and endothelial cell growth, promotes cell migration, and inhibits apoptosis.
TCF7L2	NM_001146274	Blood glucose homeostasis
SST	NM_001048	Inhibits the release of numerous secondary hormones by binding to high-affinity G-protein-coupled somatostatin receptors
SOX9	NM_000346	Maintenance of pancreatic progenitor cells
SOX17	NM_022454	Pancreas development
SLC2A2	NM_000340	Mediates facilitated bidirectional glucose transport
RBPJL	NM_014276	Pancreas development—formation of ascinar structures
RBPJ	NM_005349	Pancreas development—formation of ascinar structures
PYY	NM_004160	Inhibits pancreatic secretion and mobility in the gut
PTF1A	NM_178161	Determines whether cells allocated to the pancreatic buds continue towards pancreatic organogenesis or revert back to duodenal fates. The protein is thought to be involved in the maintenance of exocrine pancreas-specific gene expression including clastase 1 and amylase.
PPY	NM_002722	Acts as a regulator of pancreatic and gastrointestinal functions and may be important in the regulation of food intake.
POU3F4	NM_000307	Expressed in the pancreatic anlaga of the mouse foregut at e10 in the alpha cells and transactivates glucagon gene expression

TABLE 1-continued

17

Gene Symbol	Accession Number	Function
PDX1	NM_000209	Transcriptional activator of several genes, including insulin, somatostatin, glucokinase, islet amyloid polypeptide, and glucose transporter type 2. The encoded nuclear protein is involved in the early development of the pancreas and
PBX1	NM_002585	plays a major role in glucose-dependent regulation of insulin gene expression. PBX1 regulates the activity of PDX1 in pancreatic development. Regulates
		proglucagon expression by serving as a co-factor for Cdx-2
PAX 6 PAX4	NM_000280 NM_006193	Glucose homeostasis, regulates beta and alpha cell differentiation Involved in pancreatic islet development and differentiation of insulin-producing
ONECUT1	NM_004498	beta cells Transcriptional regulator of pancreatic duct development. Serves as a coactivator
Nodal	NM_018055	protein to enhance FoxA2 transcription pancreas development
NKX6-1	NM_006168	Required for the development of beta cells and is a potent bifunctional transcription regulator that binds to AT-rich sequences within the promoter region of target genes
NKX2-2	NM_002509	Regulates NKX6.1, regulates differentiation of beta cells
NEUROG3 NEUROD1	NM_020999 NM_002500	Critical for the development of alpha and beta cells Regulates expression of the insulin gene
MYT1	NM_004535	Initiates endocrine differentiation in pancreatic islet cells, positively regulates NGF3
MYC	NM_002467	Induces cell proliferation
MNX1 MIXL1	NM_001165255 NM_031944	Transcriptional activator protein expressed early in pancreas development Transcription factor that regulates cell fate during development
MAFB	NM_005461	Activator of glucagon gene expression in alpha and beta cells
MAFA KRT19	NM_201589 NM_002276	Regulates pancreatic beta cell-specific expression of the insulin gene Pancreas developemnt—duct formation
ISL2	NM_145805	Pancreas development—bud formation
ISL1	NM_002202	The encoded protein binds to the enhancer region of the insulin gene, among others, and may play an important role in regulating insulin gene expression. The encoded protein is central to the development of pancreatic cell lineages and may
INSM1	NM_002196	also be required for motor neuron generation. Pancreatic beta cell development
Ins2	NM_000207, NM_001185097,	Insulin—stimulates glucose uptake
Ins1	NM_001185098 NM_000207, NM_001185097,	Insulin—stimulates glucose uptake
INHBB	NM_001185098 NM_002193	Inhibins and activins inhibit and activate, respectively, the secretion of follitropin
ПЛПББ	MM_002193	by the pituitary gland. Inhibins/activins are involved in regulating a number of diverse functions such as hypothalamic and pituitary hormone secretion, gonadal hormone secretion, germ cell development and maturation, erythroid differentiation, insulin secretion, nerve cell survival, embryonic axial development or bone growth, depending on their subunit composition. Inhibins appear to oppose the functions of activins
HNF4A	NM_000457.3	Regulates expression of HNF1a
HNF1B	NM_000458.2	Regulates expression of HNF4a
HHEX	NM_002729.4	Recognizes the DNA sequence 5'-ATTAA-3'. Transcriptional repressor. May play a role in hematopoietic differentiation. Establishes anterior identity at two levels; acts early to enhance canonical WNT-signaling by repressing expression of TLE4, and acts later to inhibit NODAL-signaling by directly targeting NODAL
HES1	NM_005524	Represses the expression of Ngn preventing neuronal differentiation in cells adjacent to developing neuroblasts.
GHRL	NM_001134941	Ghrelin is an endogenous ligand for the growth hormone secretagogue receptor and is involved in regulating growth hormone release.
Gdf11 GCG	NM_005811 NM_002054	promotes beta-cell differentiation, modulates NGN3 Glucagon, is a pancreatic hormone that counteracts the glucose-lowering action of
GATA6	NM_005257	insulin by stimulating glycogenolysis and gluconeogenesis interacts with Nkx2.2
Gata4	NM_002052	Transcriptional activator. Binds to the consensus sequence 5'-AGATAG-3'. Acts as a transcriptional activator of ANF in cooperation with NKX2-5
FST	NM_006350	Binds directly to activin and functions as an activin antagonist. Specific inhibitor of the biosynthesis and secretion of pituitary follicle stimulating hormone (FSH)
FOXA2	NM_021784	regulation of Pdx1
FOXA1 FGF2	NM_004496 NM_002006	regulation of Pdx1 Induction of pancreatic islet cluster
FGF10	NM_004465	Maintains the pancreatic progenitor cell state
CPA1	NM_001868	Carboxypeptidase A1 is a monomeric pancreatic exopeptidase. It is involved in zymogen inhibition
ARX	NM_139058	The ARX gene provides instructions for producing a protein that regulates the activity of other genes. On the basis of this action, the ARX protein is called a transcripton factor. The ARX gene is part of a larger family of homeobox genes, which act during early embryonic development to control the formation of many body structures. Specifically, the ARX protein is believed to be involved in the development of the pancreas, gastrointestinal tract, testes, and brain.

TABLE 1-continued

Gene Symbol	Accession Number	Function
AMY1	NM_001008221	This gene encodes an amylase isoenzyme produced by the salivary gland. Alternative splicing results in multiple transcript variants encoding the same protein.
ACVR2B	NM_001106	On ligand binding, forms a receptor complex consisting of two type II and two type I transmembrane serine/threonine kinases. Type II receptors phosphorylate and activate type I receptors which autophosphorylate, then bind and activate SMAD transcriptional regulators. Receptor for activin A, activin B and inhibin A
ACVR2A	NM_001616	On ligand binding, forms a receptor complex consisting of two type II and two type I transmembrane serine/threonine kinases. Type II receptors phosphorylate and activate type I receptors which autophosphorylate, then bind and activate SMAD transcriptional regulators. Receptor for activin A, activin B and inhibin A

15

In some embodiments, antisense oligonucleotides are used to prevent or treat diseases or disorders associated with Pancreatic Developmental gene family members. Exemplary Pancreatic Developmental gene mediated diseases and disorders which can be treated with cell/tissues regenerated from stem cells obtained using the antisense compounds comprise: a disease or disorder associated with abnormal function and/ or expression of a Pancreatic Developmental gene, a disease or disorder associated with abnormal function and/or expres- 25 sion of any of the genes listed in Table 1, a cardiovascular disease or disorder (e.g., congestive heart failure, myocardial infarction, an Ischemic disease, an atrial or ventricular arrhythmia, a hypertensive vascular disease, a peripheral vascular disease, and atherosclerosis etc.), inflammation, a gastrointestinal disease or disorder (e.g., a disorder of the esophagus, achalasia, vigoruos achalasia, dysphagia, cricopharyngeal incoordination, pre-esophageal dysphagia, diffuse esophageal spasm, globus sensation, Barrett's metaplasia, gastroesophageal reflux etc.), a disease or disorder of the 35 stomach and/or duodenum (e.g., functional dyspepsia, inflammation of the gastric mucosa, gastritis, stress gastritis, chronic erosive gastritis, atrophy of gastric glands, metaplasia of gastric tissues, gastric ulcers, duodenal ulcers, a neoplasm of the stomach), a disease or disorder of the pancreas (e.g., 40 acute or chronic pancreatitis, insufficiency of the exocrinic or endocrinic tissues of the pancreas like steatorrhea, diabetes etc.), a neoplasm of the exocrine or endocrine pancreas (e.g., multiple endocrine neoplasia syndrome, ductal adenocarcinoma, cystadenocarcinoma, an islet cell tumor, insulinoma, 45 gastrinoma, carcinoid tumors, glucagonoma, Zollinger-Ellison syndrome, Vipoma syndrome, malabsorption syndrome etc.), a disease or disorder of the bowel (e.g., chronic inflammatory disease of the bowel, Crohn's disease, ileus, diarrhea and constipation, colonic inertia, megacolon, malabsorption 50 syndrome, ulcerative colitis, a functional bowel disorder, irritable bowel syndrome etc.), a neoplasm of the bowel (e.g., familial polyposis, adenocarcinoma, primary malignant lymphoma, carcinoid tumors, Kaposi's sarcoma, polyps, cancer of the colon and rectum); a hepatic disease or disorder (e.g., 55 bilirubin metabolism disorder, jaundice, syndroms of Gilbert's, Crigler-Najjar, Dubin-Johnson and Rotor; intrahepatic cholestasis, hepatomegaly, portal hypertension, ascites, Budd-Chiari syndrome, portal-systemic encephalopathy, fatty liver, psittacosis, Reye's syndrome, a liver disease due to 60 alcohol, alcoholic hepatitis or cirrhosis, fibrosis, cirrhosis etc.), fibrosis and/or cirrhosis of the liver due to inborn errors of metabolism or exogenous substances, a storage disease or disorder, syndrome of Gauche's, Zellweger's, Wilson's-disease, acute or chronic hepatitis, viral hepatitis and its variants; 65 an inflammatory condition of the liver due to virus, bacteria, fungi, protozoa, helminth; a drug induced disease or disorder

of the liver, a chronic liver disease like primary sclerosing cholangitis, alphai-antitrypsin-deficiency, primary biliary cirrhosis, a postoperative liver disorder like postoperative intrahepatic cholestasis, a hepatic granuloma, a vascular liver disease or disorder associated with systemic disease, a benign or malignant neoplasm of the liver, a disturbance of liver metabolism in the new-born or prematurely born, a musculoskeletal Disease (e.g., osteoporosis, postmenopausal osteoporosis, senile osteoporosis, secondary osteoporosis, idiopathic juvenile osteoporosis, Paget's disease of the bone, osteochondroma, osteocartilaginous exostose, etc.), a tumor of the bone (e.g., benign chondromas, chondroblastoma, chondromyxoid fibromas, osteoid osteomas, a giant cell tumor of the bone, multiple myeloma, osteosarcoma (osteogenic sarcoma), fibrosarcoma, malignant fibrous histiocytoma, chondrosarcoma, Ewing's tumor (Ewing's sarcoma), malignant lymphoma of bone (reticulum cell sarcoma, metastatic tumors of the bone), osteoarthritis, and gout and Pseudogout; a disorder of joint and connective tissue (e.g., rheumatoid arthritis, psoriatic arthritis, discoid lupus erythematosus, systemic lupus erythamatosus, scleroderma (systemic sclerosis), Sjogren's syndrome, connective tissue dispolymyositis and dermatomyositis, relapsing polychondritis, vasculitis, polyarteritis nodosa, polymyalgia rheumatica, temporal arteritis, Wegener's granulomatosis, Reiter's syndrome, Behcet's syndrome, ankylosing spondylitis, or Charcot's joints (neuropathic joint disease) etc.); a bone and joint infection (e.g., osteomyelitis, and infectious arthritis); a disease or disorder of muscles, bursas, and/or tendons (e.g., spasmodic torticollis, fibromyalgia syndromes (myofascial pain syndromes, fibromyositis), bursitis, tendinitis and tenosynovitis), foot problem (e.g., ankle sprain, foot fractures, heel spurs, Sever's disease, posterior achilles tendon bursitis, anterior achilles tendon bursitis, posterior tibial neuralgia, pain in the ball of the foot (caused by damage to the nerves between the toes or to the joints between the toes and foot), onychomycosis, or nail discoloration), cancer, an inflammatory disease or disorder such as: hypersensitivity reactions of type I-IV (e.g., a hypersensitivity disease of the lung including asthma, atopic diseases, allergic rhinitis or conjunctivitis, angioedema of the lids, hereditary angioedema, antireceptor hypersensitivity reactions and autoimmune diseases, Hashimoto's thyroiditis, systemic lupus erythematosus, Goodpasture's syndrome, pemphigus, myasthenia gravis, Grave's and Raynaud's disease, type B insulin-resistant diabetes, rheumatoid arthritis, psoriasis, Crohn's disease, scleroderma, mixed connective tissue disease, polymyositis, sarcoidosis, glomerulonephritis, acute or chronic host versus graft reactions); a pulmonary disease or disorder such as: Chronic obstructive pulmonary disease (COPD); a urinary system disorder such as: malign disorders

20

of the organs constituting the genitourinary system of female and male, a renal disease or disorder like acute or chronic renal failure, immunologically mediated renal diseases like renal transplant rejection, lupus nephritis, immune complex renal diseases, glomerulopathies, nephritis, toxic nephropa-5 thy, an obstructive uropathy like benign prostatic hyperplasia (BPH), neurogenic bladder syndrome, urinary incontinence like urge-, stress-, or overflow incontinence, pelvic pain, and erectile dysfunction, a disease or a disorder associated with defective endocrine pancreatic development (e.g., type 2 dia-10 betes mellitus); a disease or a disorder associated with defective neurogenesis; a neurodegenerative disease or disorder (e.g. Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis etc.); a disease or a disorder associated with defective development of the vestibular and/or auditory sys- 15 tem, a disease or a disorder associated with photoreceptor cell degeneration (e.g., loss of vision, age-related macular degeneration etc.), obesity, a disease or a disorder associated with defective functioning of liver (e.g., liver failure), pulverulent cataract, cerulean cataract, non-syndromic congenital cata- 20 ract, congenital cataract-microcornea syndrome, a pancreatic disease or a disorder (e.g., diabetes, MODY syndrome, Partial pancreas agenesis, chronic hyperglycemia, pancreatic beta cell failure, glucose toxicity, Glucose Intolerance, Metabolic syndrome X etc.), Crohn's disease, myocardial infarction, 25 hypercholesteremia, intercranial arterosclerosis, cerebral infarction, herpesviral infection, a disease or disorder associated with impaired lipid metabolism, a disease or disorder associated with insulin production, a disease or disorder associated with scrotonin production (e.g., depression and obesity), a 30 neurological disease or disorder (including disorders associated with neural defects (e.g., defects in motor neurons, serotonin-producing neurons, dopamine neurons, and developmental defects in the forebrain, midbrain, hindbrain, and spinal cord) etc.), a disease of the reproductive System and a 35 metabolic disease or disorder such as diabetes (e.g., type 2 diabetes: non-insulin dependent diabetes mellitus).

In another embodiment, the antisense oligonucleotides modulate the expression, in vivo amounts and/or function of a Pancreatic Developmental gene in patients suffering from 40 or at risk of developing diseases or disorders associated with Pancreatic Developmental genes.

In one embodiment, the oligonucleotides are specific for polynucleotides of a Pancreatic Developmental gene, which includes, without limitation noncoding regions. The Pancreatic Developmental gene targets comprise variants of a Pancreatic Developmental gene; mutants of a Pancreatic Developmental gene, including SNPs: noncoding sequences of a Pancreatic Developmental gene; alleles, fragments and the like. Preferably the oligonucleotide is an antisense RNA molecule.

In accordance with embodiments of the invention, the target nucleic acid molecule is not limited to Pancreatic Developmental gene polynucleotides alone but extends to any of the isoforms, receptors, homologs, non-coding regions and 55 the like of a Pancreatic Developmental gene.

In another embodiment, an oligonucleotide targets a natural antisense sequence (natural antisense to the coding and non-coding regions) of a Pancreatic Developmental gene targets, including, without limitation, variants, alleles, 60 homologs, mutants, derivatives, fragments and complementary sequences thereto. Preferably the oligonucleotide is an antisense RNA or DNA molecule.

In another embodiment, the oligomeric compounds of the present invention also include variants in which a different base is present at one or more of the nucleotide positions in the compound. For example, if the first nucleotide is an

22

adenine, variants may be produced which contain thymidine, guanosine, cytidine or other natural or unnatural nucleotides at this position. This may be done at any of the positions of the antisense compound.

In some embodiments, homology, sequence identity or complementarity, between the antisense compound and target is from about 50% to about 60%. In some embodiments, homology, sequence identity or complementarity, is from about 60% to about 70%. In some embodiments, homology, sequence identity or complementarity, is from about 70% to about 80%. In some embodiments, homology, sequence identity or complementarity, is from about 80% to about 90%. In some embodiments, homology, sequence identity or complementarity, is about 90%, about 92%, about 94%, about 95%, about 96%, about 97%, about 98%, about 99% or about 100%.

An antisense compound is specifically hybridizable when binding of the compound to the target nucleic acid interferes with the normal function of the target nucleic acid to cause a loss of activity, and there is a sufficient degree of complementarity to avoid non-specific binding of the antisense compound to non-target nucleic acid sequences under conditions in which specific binding is desired. Such conditions include, i.e., physiological conditions in the case of in vivo assays or therapeutic treatment, and conditions in which assays are performed in the case of in vitro assays.

An antisense compound, whether DNA, RNA, chimeric, substituted etc, is specifically hybridizable when binding of the compound to the target DNA or RNA molecule interferes with the normal function of the target DNA or RNA to cause a loss of utility, and there is a sufficient degree of complementarily to avoid non-specific binding of the antisense compound to non-target sequences under conditions in which specific binding is desired, i.e., under physiological conditions in the case of in vivo assays or therapeutic treatment, and in the case of in vitro assays, under conditions in which the assays are performed.

In another embodiment, targeting of a Pancreatic Developmental gene including without limitation, antisense sequences which are identified and expanded, using for example, PCR, hybridization etc., one or more of the sequences set forth as SEQ ID NO: 6 to 12, and the like, modulate the expression or function of a Pancreatic Developmental gene. In one embodiment, expression or function is up-regulated as compared to a control. In another embodiment, expression or function is down-regulated as compared to a control.

In another embodiment, oligonucleotides comprise nucleic acid sequences set forth as SEQ ID NOS: 13 to 45 including antisense sequences which are identified and expanded, using for example, PCR, hybridization etc. These oligonucleotides can comprise one or more modified nucleotides, shorter or longer fragments, modified bands and the like. Examples of modified bonds or internucleotide linkages comprise phosphorothionate, phosphorodithioate or the like. In another embodiment, the nucleotide comprise a phosphorus derivative. The phosphorus derivative (or modified phosphate group) which may be attached to the sugar or sugar analog moiety in the modified oligonucleotides of the present invention may be a monophosphate, diphosphate, triphosphate, alkylphosphate, alkanephosphate, phosphorothioate and the like. The preparation of the above-noted phosphate analogs, and their incorporation into nucleotides, modified nucleotides and oligonucleotides, per se, is also known and need not be described here.

The specificity and sensitivity of antisense is also harnessed by those of skill in the art for therapeutic uses. Anti-

sense oligonucleotides have been employed as therapeutic moieties in the treatment of disease states in animals and man. Antisense oligonucleotides have been safely and effectively administered to humans and numerous clinical trials are presently underway. It is thus established that oligonucleotides can be useful therapeutic modalities that can be configured to be useful in treatment regimes for treatment of cells, tissues and animals, especially humans.

In embodiments of the present invention oligomeric antisense compounds, particularly oligonucleotides, bind to target nucleic acid molecules and modulate the expression and/or function of molecules encoded by a target gene. The functions of DNA to be interfered comprise, for example, replication and transcription. The functions of RNA to be interfered comprise all vital functions such as, for example, translocation of the RNA to the site of protein translation, translation of protein from the RNA, splicing of the RNA to yield one or more mRNA species, and catalytic activity which may be engaged in or facilitated by the RNA. The functions may be up-regulated or inhibited depending on the functions desired.

The antisense compounds, include, antisense oligomeric compounds, antisense oligonucleotides, external guide sequence (EGS) oligonucleotides, alternate splicers primers, 25 probes, and other oligomeric compounds that hybridize to at least a portion of the target nucleic acid. As such, these compounds may be introduced in the form of single-stranded, double-stranded, partially single-stranded, or circular oligomeric compounds.

Targeting an antisense compound to a particular nucleic acid molecule, in the context of this invention, can be a multistep process. The process usually begins with the identification of a target nucleic acid whose function is to be modulated. This target nucleic acid may be, for example, a cellular gene (or mRNA transcribed from the gene) whose expression is associated with a particular disorder or disease state, or a nucleic acid molecule from an infectious agent. In the present invention, the target nucleic acid encodes a Pancreatic Developmental gene.

The targeting process usually also includes determination of at least one target region, segment, or site within the target nucleic acid for the antisense interaction to occur such that the desired effect, e.g., modulation of expression, will result. 45 Within the context of the present invention, the term "region" is defined as a portion of the target nucleic acid having at least one identifiable structure, function, or characteristic. Within regions of target nucleic acids are segments, "Segments" are defined as smaller or sub-portions of regions within a target nucleic acid. "Sites," as used in the present invention, are defined as positions within a target nucleic acid.

In one embodiment, the antisense oligonucleotides bind to the natural antisense sequences of a Pancreatic Developmental gene and modulate the expression and/or function of a 55 Pancreatic Developmental gene (SEQ ID NO: 1 to 5). Examples of antisense sequences include SEQ ID NOS: 6 to 45.

In another embodiment, the antisense oligonucleotides bind to one or more segments of a Pancreatic Developmental 60 gene polynucleotide and modulate the expression and/or function of a Pancreatic Developmental gene. The segments comprise at least five consecutive nucleotides of a Pancreatic Developmental gene sense or antisense polynucleotides.

In another embodiment, the antisense oligonucleotides are 65 specific for natural antisense sequences of a Pancreatic Developmental gene wherein binding of the oligonucleotides

24

to the natural antisense sequences of a Pancreatic Developmental gene modulate expression and/or function of a Pancreatic Developmental gene.

In another embodiment, oligonucleotide compounds comprise sequences set forth as SEQ ID NOS: 13 to 45, antisense sequences which are identified and expanded, using for example, PCR, hybridization etc. These oligonucleotides can comprise one or more modified nucleotides, shorter or longer fragments, modified bonds and the like. Examples of modified bonds or internucleotide linkages comprise phosphorothioate, phosphorodithioate or the like. In another embodiment, the nucleotides comprise a phosphorus derivative. The phosphorus derivative (or modified phosphate group) which may be attached to the sugar or sugar analog moiety in the modified oligonucleotides of the present invention may be a monophosphate, diphosphate, triphosphate, alkylphosphate, alkanephosphate, phosphorothioate and the like. The preparation of the above-noted phosphate analogs, and their incorporation into nucleotides, modified nucleotides and oligonucleotides, per se, is also known and need not be described

Since, as is known in the art, the translation initiation codon is typically 5'-AUG (in transcribed mRNA molecules: 5'-ATG in the corresponding DNA molecule), the translation initiation codon is also referred to as the "AUG codon," the "start codon" or the "AUG start codon". A minority of genes has a translation initiation codon having the RNA sequence 5'-GUG, 5'-UUG or 5'-CUG; and 5'-AUA, 5'-ACG and 5'-CUG have been shown to function in vivo. Thus, the terms "translation initiation codon" and "star codon" can encompass many codon sequences, even though the initiator amino acid in each instance is typically methionine (in eukaryotes) or formylmethionine (in prokaryotes). Eukaryotic and prokaryotic genes may have two or more alternative start codons, any one of which may be preferentially utilized for translation initiation in a particular cell type or tissue, or under a particular set of conditions. In the context of the invention, "start codon" and "translation initiation codon" refer to the codon or codons that are used in vivo to initiate translation of an mRNA transcribed from a gene encoding a Pancreatic Developmental gene, regardless of the sequence(s) of such codons. A translation termination codon (or "stop codon") of a gene may have one of three sequences, i.e., 5'-UAA, 5'-UAG and 5'-UGA (the corresponding DNA sequences are 5'-TAA, 5'-TAG and 5'-TGA, respectively).

The terms "start codon region" and "translation initiation codon region" refer to a portion of such an mRNA or gene that encompasses from about 25 to about 50 contiguous nucleotides in either direction (i.e., 5' or 3') from a translation initiation codon. Similarly, the terms "stop codon region" and "translation termination codon region" refer to a portion of such an mRNA or gene that encompasses from about 25 to about 50 contiguous nucleotides in either direction (i.e. 5' or 3') from a translation termination codon. Consequently, the "star codon region" (or "translation initiation codon region") and the "stop codon region" (or "translation termination codon region") are all regions that may be targeted effectively with the antisense compounds of the present invention.

The open reading frame (ORF) or "coding region," which is known in the an to refer so the region between the translation initiation codon and the translation termination codon, is also a region which may be targeted effectively. Within the context of the present invention, a targeted region is the intragenic region encompassing the translation initiation or termination codon of the open reading frame (ORF) of a gene.

Another target region includes the 5 untranslated region (5'UTR), known in the art to refer to the portion of an mRNA

in the 5' direction from the translation initiation codon, and thus including nucleotides between the 5' cap site and the translation initiation codon of an mRNA (or corresponding nucleotides on the gene). Still another target region includes the 3' untranslated region (3'UTR), known in the art to refer to 5 the portion of an mRNA in the 3' direction from the translation termination codon, and thus including nucleotides between the translation termination codon and 3' end of an mRNA (or corresponding nucleotides on the gene). The 5' cap site of an mRNA comprises an N7-methylated guanosine 10 residue joined to the 5'-most residue of the mRNA via a 5'-5' triphosphate linkage. The 5' cap region of an mRNA is considered to include the 5' cap structure itself as well as the first 50 nucleotides adjacent to the cap site. Another target region for this invention is the 5' cap region.

Although some eukaryotic mRNA transcripts are directly translated, many contain one or more regions, known as "introns," which are excised from a transcript before it is translated. The remaining (and therefore translated) regions are known as "exons" and are spliced together to form a 20 continuous mRNA sequence. In one embodiment, targeting splice sites, i.e., intron-exon junctions or exon-intron junctions, is particularly useful in situations where aberrant splicing is implicated in disease, or where an overproduction of a particular splice product is implicated in disease. An aberrant 25 fusion junction due to rearrangement or deletion is another embodiment of a target site. mRNA transcripts produced via the process of splicing of two (or more) mRNAs from different gene sources are known as "fusion transcripts". Introns can be effectively targeted using antisense compounds tar- 30 geted to, for example, DNA or pre-mRNA.

In another embodiment, the antisense oligonuclotides bind to coding and/or non-coding regions of a target polynucleotide and modulate the expression and/or function of the target molecule.

In another embodiment, the antisense oligonucleotides bind to natural antisense polynucleotides and modulate the expression and/or function of the target molecule.

In another embodiment, the antisense oligonucleotides bind to sense polynucleotides and modulate the expression 40 and/or function of the target molecule.

Alternative RNA transcripts can be produced from the same genomic region of DNA. These alternative transcripts are generally known as "variants". More specifically, "premRNA variants" are transcripts produced from the same 45 genomic DNA that differ from other transcripts produced from the same genomic DNA in either their start or stop position and contain both intronic and exonic sequence.

Upon excision of one or more exon or intron regions, or portions thereof during splicing, pre-mRNA variants produce 50 smaller "mRNA variants". Consequently, mRNA variants are processed pre-mRNA variants and each unique pre-mRNA variant must always produce a unique mRNA variant as a result of splicing. These mRNA variants are also known as "alternative splice variants". If no splicing of the pre-mRNA 55 variant occurs then the pre-mRNA variant is identical to the mRNA variant.

Variants can be produced through the use of alternative signals to start or stop transcription. Pre-mRNAs and mRNAs can possess more than one start codon or stop codon. Variants 60 that originate from a pre-mRNA or mRNA that use alternative start codons are known as "alleviative start variants" of that pre-mRNA or mRNA. Those transcripts that use an alternative stop codon are known as "alternative slop variants" of that pre-mRNA or mRNA. One specific type of alliterative 65 stop variant is the "polyA variant" in which the multiple transcripts produced result from the alternative selection of

26

one of the "polyA stop signals" by the transcription machinery, thereby producing transcripts that terminate at unique polyA sites. Within the context of the invention, the types of variants described herein are also embodiments of target nucleic acids.

The locations on the target nucleic acid to which the antisense compounds hybridize are defined as at least a 5-nucleotide long portion of a target region to which an active antisense compound is targeted.

While the specific sequences of certain exemplary target segments are set forth herein, one of skill in the at will recognize that these serve to illustrate and describe particular embodiments within the scope of the present invention. Additional target segments are readily identifiable by one having ordinary skill in the art in view of this disclosure.

Target segments 5-100 nucleotides in length comprising a stretch of at least five (5) consecutive nucleotides selected from within the illustrative target segments are considered to be suitable for targeting as well.

Target segments can include DNA or RNA sequences that comprise at least the 5 consecutive nucleotides from the 5'-terminus of one of the illustrative target segments (the remaining nucleotides being a consecutive stretch of the same DNA or RNA beginning immediately upstream of the 5'-terminus of the target segment and continuing until the DNA or RNA contains about 5 to about 100 nucleotides). Similarly target segments are represented by DNA or RNA sequences that comprise at least the 5 consecutive nucleotides from the 3-terminus of one of the illustrative target segments (the remaining nucleotides being a consecutive stretch of the same DNA or RNA beginning immediately downstream of the 3'-terminus of the target segment and continuing until the DNA or RNA contains about 5 to about 100 nucleotides). One having skill in die an armed with the target segments illus-35 trated herein will be able, without undue experimentation, to identify further target segments.

Once one or more target regions, segments or sites have been identified, antisense compounds are chosen which are sufficiently complementary to the target, i.e., hybridize sufficiently well and with sufficient specificity, to give the desired effect.

In embodiments of the invention the oligonucleotides bind to an antisense strand of a particular target. The oligonucleotides are at least 5 nucleotides in length and can be synthesized so each oligonucleotide targets overlapping sequences such that oligonucleotides are synthesized to cover the entire length of the target polynucleotide. The targets also include coding as well as non coding regions.

In one embodiment, specific nucleic acids are targeted by antisense oligonucleotides. Targeting an antisense compound to a particular nucleic acid, is a multistep process. The process usually begins with the identification of a nucleic acid sequence whose function is to be modulated. This may be, for example, a cellular gene (or mRNA transcribed from the gene) whose expression is associated with a particular disorder or disease state, or a non coding polynucleotide such as for example, non coding RNA (ncRNA).

RNAs can be classified into (1) messenger RNAs (mRNAs), which are translated into proteins, and (2) non-protein-coding RNAs (ncRNAs). ncRNAs comprise microRNAs, antisense transcripts and other Transcriptional Units (TU) containing a high density of stop codons and lacking any extensive "Open Reading Frame". Many ncRNAs appear to start from initiation sites in 3' untranslated regions (3'UTRs) of protein-coding loci, ncRNAs are often rare and at least half of the ncRNAs that have been sequenced by the FANTOM consortium seem not to be polyadenylated. Most researchers

have for obvious reasons focused on polyadenylated mRNAs that are processed and exported to the cytoplasm. Recently, it was shown that the set of non-polyadenylated nuclear RNAs may be very large, and that many such transcripts arise from intergenic regions. The mechanism by which ncRNAs may 5 regulate gene expression is by base pairing with target transcripts. The RNAs that function by base pairing can be grouped into (1) cis encoded RNAs that are encoded at the same genetic location, but on the opposite strand to the RNAs they act upon and therefore display perfect complementarity 10 to their target, and (2) trans-encoded RNAs that are encoded at a chromosomal location distinct from the RNAs they act upon and generally do not exhibit perfect base-pairing potential with their targets.

Without wishing to be bound by theory, perturbation of an 15 antisense polynucleotide by the antisense oligonucleotides described herein can after the expression of the corresponding sense messenger RNAs. However, this regulation can either be discordant (antisense knockdown results in messenger RNA elevation) or concordant (antisense knockdown 20 results in concomitant messenger RNA reduction). In these cases, antisense oligonucleotides can be targeted to overlapping or non-overlapping pats of the antisense transcript resulting in its knockdown or sequestration. Coding as well as non-coding antisense can be targeted in an identical manner 25 and that either category is capable of regulating the corresponding sense transcripts—either in a concordant or disconcordant manner. The strategies that are employed in identifying new oligonucleotides for use against a target can be based on the knockdown of antisense RNA transcripts by antisense 30 oligonucleotides or any other means of modulating the desired target.

Strategy 1: In the case of discordant regulation, knocking down the antisense transcript elevates the expression of the conventional (sense) gene. Should that later gene encode for 35 a known or putative drug target, then knockdown of its antisense counterpart could conceivably mimic the action of a receptor agonist or an enzyme stimulant.

Strategy 2: In the case of concordant regulation, one could concomitantly knock down both antisense and sense transcripts and thereby achieve synergistic reduction of the conventional (sense) gene expression. If, for example, an antisense oligonucleotide is used to achieve knockdown, then this strategy can be used to apply one antisense oligonucleotide targeted to the sense transcript and another antisense oligonucleotide targeted to the corresponding antisense transcript, or a single energetically symmetric antisense oligonucleotide that simultaneously targets overlapping sense and antisense transcripts.

According to the present invention, antisense compounds 50 include antisense oligonucleotides, ribozymes, external guide sequence (EGS) oligonucleotides, siRNA compounds, single- or double-stranded RNA interference (RNAi) compounds such as siRNA compounds, and other oligomeric compounds which hybridize to at least a portion of the target 55 nucleic acid and modulate its function. As such, they may be DNA, RNA, DNA-like, RNA-like, or mixtures thereof, or may be mimetics of one or more of these. These compounds may be single-stranded, doublestranded, circular hairpin oligomeric compounds and may contain structural elements 60 such as internal or terminal bulges, mismatches or loops. Antisense compounds are routinely prepared linearly but can be joined or otherwise prepared to be circular and/or branched. Antisense compounds can include constructs such as, for example, two strands hybridized to form a wholly or 65 partially double-stranded compound or a single strand with sufficient self-complementarity to allow for hybridization

and formation of a fully or partially double-stranded compound. The two strands can be linked internally leaving free 3' or 5' termini or can be linked to form a continuous hairpin structure or loop. The hairpin structure may contain an overhang on either the 5' or 3' terminus producing an extension of single stranded character. The double stranded compounds optionally can include overhangs on the ends. Further modifications can include conjugate groups attached to one of the termini, selected nucleotide positions, sugar positions or to one of the internucleoside linkages. Alternatively, the two strands can be linked via a non-nucleic acid moiety or linker group. When formed from only one strand, dsRNA can take the form of a self-complementary hairpin-type molecule that doubles back on itself to form a duplex. Thus, the dsRNAs can be fully or partially double stranded. Specific modulation of gene expression can be achieved by stable expression of dsRNA hairpins in transgenic cell lines, however, in some embodiments, the gene expression or function is up regulated. When formed from two strands, or a single strand that takes the form of a self-complementary hairpin-type molecule doubled back on itself to form a duplex, the two strands (or duplex-forming regions of a single strand) are complementary RNA strands that base pair in Watson-Crick fashion.

28

Once introduced to a system, the compounds of the invention may elicit the action of one or more enzymes or structural proteins to effect cleavage or other modification of the target nucleic acid or may work via occupancy-based mechanisms. In general, nucleic acids (including oligonucleotides) may be described as "DNA-like" (i.e. generally having one or more 2'-deoxy sugars and generally, T rather than U bases) or "RNA-like" (i.e., generally having one or more 2'-hydroxyl or 2'-modified sugars and, generally U rather than T bases). Nucleic acid helices can adopt more than one type of structure, most commonly the A- and B-forms. It is believed that, in general, oligonucleotides which have B-form-like structure are "DNA-like" and those which have A-form like structure are "RNA-like." In some (chimeric) embodiments, an antisense compound may contain both A- and B-form regions.

In another embodiment, the desired oligonuclotides or antisense compounds, comprise at least one of antisense RNA, antisense DNA, chimeric antisense oligonucleotides, antisense oligonucleotides comprising modified linkages, interference RNA (RNAi), short interfering RNA (siRNA); a micro, interfering RNA (miRNA); a small, temporal RNA (stRNA); or a short, hairpin RNA (shRNA); small RNA-induced gene activation (RNAa): small activating RNAs (saRNAs), or combinations thereof.

dsRNA can also activate gene expression, a mechanism that has been termed "small RNA-induced gene activation" or RNAa. dsRNAs targeting gene promoters induce potent transcriptional activation of associated genes. RNAa was demonstrated in human cells using synthetic dsRNAs, termed "small activating RNAs" (saRNAs).

Small double-stranded RNA (dsRNA), such as small interfering RNA (siRNA) and microRNA (miRNA), have been found to be the trigger of an evolutionary conserved mechanism known as RNA interference (RNAi), RNAi invariably leads to gene silencing. However, in instances described in detail in the examples section which follows, oligonucle-otides are shown to increase the expression and/or function of the Pancreatic Developmental gene polynucleotides and encoded products thereof. dsRNAs may also act as small activating RNAs (saRNA). Without wishing to be bound by theory, by targeting sequences in gene promoters, saRNAs

would induce target gene expression in a phenomenon referred to as dsRNA-induced transcriptional activation (RNAa)

In a further embodiment, the "target segments" identified herein may be employed in a screen for additional compounds 5 that modulate the expression of a Pancreatic Developmental gene polynucleotide. "Modulators" are those compounds that decrease or increase the expression of a nucleic acid molecule encoding a Pancreatic Developmental gene and which comprise at least a 5-nucleotide portion that is complementary to 10 a target segment. The screening method comprises the steps of contacting a target segment of a nucleic acid molecule encoding sense or natural antisense polynucleotides of a Pancreatic Developmental gene with one or more candidate modulators, and selecting for one or more candidate modu- 15 lators which decrease or increase the expression of a nucleic acid molecule encoding a Pancreatic Developmental gene polynucleotide, e.g. SEQ ID NOS: 13 to 45. Once it is shown that the candidate modulator or modulators are capable of modulating (e.g. either decreasing or increasing) the expres- 20 sion of a nucleic acid molecule encoding a Pancreatic Developmental gene polynucleotide, the modulator may then be employed in further investigative studies of the function of a Pancreatic Developmental gene polynucleotide, or for use as a research, diagnostic, or therapeutic agent in accordance 25 with the present invention.

Targeting the natural antisense sequence modulates the function of the target gene. For example, the Pancreatic Developmental gene accession numbers (e.g. NM_001146274, NM 001025366, NM 001048, 30 NM_000346, NM_022454, NM_000340, NM_014276, NM_005349, NM_004160, NM_178161, NM_002722, NM_000307, NM_000209, NM_002585, NM_000280, NM_006193, NM_004498, NM_018055, NM_006168, NM_002509, NM_020999, NM_002500, NM_004535, 35 NM_002467, NM_001165255, NM_031944, NM_005461, NM_201589, NM_002276, NM_145805, NM_002202, NM_002196, NM_000207, NM_001185097, NM_000207, NM_001185098, NM_001185097, NM_001185098, NM_002193, 40 NM_000457.3, NM_002729.4, NM_000458.2, NM_005811, NM 005524, NM 001134941, NM_002054, NM_005257, NM_002052, NM_006350, NM_021784, NM_004496, NM_002006, NM_004465, NM_139058, NM_001868, NM_00108221, 45 NM_001106, NM_001616). In an embodiment, the target is an antisense polynucleotide of the Pancreatic Developmental gene. In an embodiment, an antisense oligonucleotide targets sense and/or natural antisense sequences of a Pancreatic Developmental gene polynucleotide (e.g. accession numbers 50 NM_001025366, NM_001146274, NM_001048, NM_000346, NM_022454, NM_000340, NM_014276, NM_005349, NM_004160, NM_178161, NM_002722, NM_000307, NM_000209, NM_002585, NM_002580, NM_006193, NM_004498, NM_018055, NM_006168, 55 NM 002509, NM 020999, NM 002500, NM 004535, NM_002467, NM_001165255, NM_031944, NM_005461, NM_201589, NM_002276, NM_145805, NM_000207, NM_002202, NM_002196, NM_001185097, NM_001185098, NM_000207, 60 NM 001185097, NM 001185098, NM 002193, NM 000457.3, NM_000458.2, NM_002729.4, NM_001134941, NM 005524. NM_005811, NM_002054, NM_005257, NM_002052, NM_006350, NM 021784, NM 004496, NM 002006, NM 004465, 65 NM_139058, NM_001008221, NM_001868, NM_001106, NM_001616), variants, alleles, isoforms,

30

homologs, mutants, derivatives, fragments and complementary sequences thereto. Preferably the oligonucleotide is an antisense molecule and the targets include coding and noncoding regions of antisense and/or sense Pancreatic Developmental gene polynucleotides.

The target segments of the present invention may be also be combined with their respective complementary antisense compounds of the present invention to form stabilized double-stranded (duplexed) oligonucleotides.

Such double stranded oligonucleotide moieties have been shown in the art to modulate target expression and regular translation as well as RNA processing via an antisense mechanism. Moreover, the double-stranded moieties may be subject to chemical modifications. For example, such double-stranded moieties have been shown to inhibit the target by the classical hybridization of antisense strand of the duplex so the target, thereby triggering enzymatic degradation of the target.

In an embodiment, an antisense oligonucleotide targets Pancreatic Developmental gene polynucleotides (e.g. accesnumbers NM 001025366, NM 001146274. sion NM_001048, NM_000346, NM_022454, NM_000340, NM_014276, NM_005349, NM_004160, NM_178161, NM_002722, NM_000307, NM_000209, NM_002585, NM_000280, NM_006193, NM_004498, NM_018055, NM 006168, NM 002509, NM 020999, NM 002500, NM 004535, NM 002467, NM 001165255, NM_031944, NM_005461, NM_201589, NM_002276, NM 145805, NM 002202, NM 002196, NM 000207, NM 001185097, NM 001185098, NM 000207, NM_001185097, NM_001185098, NM 002193, NM_000457.3, NM_000458.2, NM_002729.4, NM_005524, NM_005811, NM_001134941, NM_002054, NM_005257, NM_002052, NM_006350, NM_021784, NM_004496, NM_002006, NM_004465, NM 001868, NM 139058, NM_00100221, NM_001106, NM_001616, variants, alleles, isoforms, homologs mutants, derivatives, fragments and complementary sequences thereto. Preferably the oligonucleotide is an antisense molecule.

In accordance with embodiments of the invention the target nucleic acid molecule is not limited to Pancreatic Developmental gene alone but extends to any of the isoforms, receptors, homologs and the like of a Pancreatic Developmental gene molecule.

In another embodiment, an oligonucleotide targets a natural antisense sequence of a Pancreatic Developmental gene polynucleotide, for example, polynucleotides set forth as SEQ ID NO: 6 to 12, and any variants, alleles, homologs, mutants, derivatives, fragments and complementary sequence thereto. Example of antisense oligonucleotides are set forth as SEQ ID NOS: 13 to 45.

In one embodiment, the oligonucleotides are complementary to or bind to nucleic acid sequences of a Pancreatic Developmental gene antisense, including without limitation noncoding sense and/or antisense sequences associated with a Pancreatic Developmental gene polynucleotide and modulate expression and/or function of a Pancreatic Developmental gene molecule.

In another embodiment, the oligonucleotides are complementary to or bind to nucleic acid sequences of a Pancreatic Developmental gene natural antisense, set forth as SEQ ID NO: 6 to 12 and modulate expression and/or function of a Pancreatic Developmental gene molecule.

In an embodiment, oligonucleotides comprise sequences of at least 5 consecutive nucleotides of SEQ ID NOS: 13 to 45 and modulate expression and/or function of a Pancreatic Developmental gene molecule.

The polynucleotide targets comprise Pancreatic Developmental gene, including family members thereof, variants of a Pancreatic Developmental gene, mutants of a Pancreatic Developmental gene, including SNPs; noncoding sequences of a Pancreatic Developmental gene; alleles of a Pancreatic 5 Developmental gene; species variants, fragments and the like. Preferably the oligonucleotide is an antisense molecule.

In another embodiment, the oligonucleotide targeting Pancreatic Developmental gene polynucleotides, comprise: antisense RNA, interference RNA (RNAi), short interfering RNA (siRNA); micro interfering RNA (miRNA); a small, temporal RNA (stRNA); or a short, hairpin RNA (shRNA); small RNA-induced gene activation (RNAa); or, small activating RNA (saRNA).

In another embodiment targeting of a Pancreatic Developmental gene polynucleotide, e.g. SEQ ID NO: 6 to 12 modulate the expression or function of these targets. In one embodiment, expression or function is up-regulated as compared to a
control. In another embodiment, expression or function is
down-regulated as compared to a control.

In another embodiment, antisense compounds comprise sequences set forth as SEQ ID NOS: 13 to 45. These oligonucleotides can comprise one or more modified nucleotides, shorter or longer fragments, modified bonds and the like.

In another embodiment, SEQ ID NOS: 13 to 45 comprise 25 one or more LNA nucleotides.

The modulation of a desired target nucleic acid can be carried out in several ways known in the art. For example, antisense oligonucleotides, siRNA etc. Enzymatic nucleic acid molecules (e.g., ribozymes) are nucleic acid molecules 30 capable of catalyzing one or more of a variety of reactions, including the ability to repeatedly cleave other separate nucleic acid molecules in a nucleotide base sequence-specific manner. Such enzymatic nucleic acid molecules can be used, for example, to target virtually any RNA transcript.

Because of their sequence-specificity, trans-cleaving enzymatic nucleic acid molecules show promise as therapeutic agents for human disease. Enzymatic nucleic acid molecules can be designed to cleave specific RNA targets within the background of cellular RNA. Such a cleavage event renders 40 the mRNA non-functional and abrogates protein expression from that RNA. In this manner, synthesis of a protein associated with a disease state can be selectively inhibited.

In general, enzymatic nucleic acids with RNA cleaving activity act by first binding to a target RNA. Such binding 45 occurs through the target binding portion of a enzymatic nucleic acid which is held in close proximity to an enzymatic portion of the molecule that acts to cleave the target RNA. Thus, the enzymatic nucleic acid first recognizes and then binds a target RNA through complementary base pairing, and 50 one bound to the connect site, acts enzymatically to cut the target RNA. Strategic cleavage of such a target RNA will destroy its ability to direct synthesis of an encoded protein. After an enzymatic nucleic acid has bound and cleaved its RNA target, it is released from that RNA to search for another 55 target and can repeatedly bind and cleave new targets.

Several approaches such as in vitro selection (evolution) strategies have been used to evolve new nucleic acid catalysts capable of catalyzing a variety of reactions, such as cleavage and ligation of phosphodiester linkages and amide linkages. 60

The development of ribozymes that are optimal for catalytic activity would contribute significantly to any strategy that employs RNA-cleaving ribozymes for the purpose of regulating gene expression. The hammerhead ribozyme, for example, functions with a catalytic rate (kcat) of about 1 65 min-1 in the presence of saturating (10 mM) concentrations of Mg2+ cofactor. An artificial "RNA ligase" ribozyme has

32

been shown to catalyze the corresponding self-modification reaction with a rate of about 100 min-1. In addition, it is known that certain modified hammerhead ribozymes that have substrate binding arms made of DNA catalyze RNA cleavage with multiple turn-over rates that approach 100 min-1. Finally, replacement of a specific residue within the catalytic core of the hammerhead with certain nucleotide analogues gives modified ribozymes that show as much as a 10-fold improvement in catalytic rate. These findings demonstrate that ribozymes can promote chemical transformations with catalytic rats that are significantly greater than those displayed in vitro by most natural self-cleaving ribozymes. It is then possible that the structures of certain selfcleaving ribozymes may be optimized to give maximal catalytic activity, or that entirely new RNA motifs can be made that display significantly faster rates for RNA phosphodiester cleavage.

Intermolecular cleavage of an RNA substrate by an RNA catalyst that fits the "hammerhead" model was first shown in 1987. The RNA catalyst was recovered and reacted with multiple RNA molecules, demonstrating that it was truly catalytic.

Catalytic RNAs designed based on the "hammerhead" motif have been used to cleave specific target sequences by making appropriate base changes in the catalytic RNA to maintain necessary base pairing with the target sequences. This has allowed use of the catalytic RNA to cleave specific target sequences and indicates that catalytic RNAs designed according to the "hammerhead" model may possibly cleave specific substrate RNAs in vivo.

RNA interference (RNAi) has become a powerful tool for modulating gene expression in mammals and mammalian cells. This approach requires the delivery of small interfering RNA (siRNA) either as RNA itself or as DNA, using an expression plasmid or virus and the coding sequence for small hairpin RNAs that are processed to siRNAs. This system enables efficient transport of the pre-siRNAs to the cytoplasm where they are active and permit the use of regulated and tissue specific promoters for gene expression.

In one embodiment, an oligonucleotide or antisense compound comprises an oligomer or polymer of ribonucleic and (RNA) and/or deoxyribonucleic acid (DNA), or a mimetic, chimera, analog or homolog thereof. This term includes oligonucleotides composed of naturally occurring nucleotides, sugars and covalent internucleoside (backbone) linkages as well as oligonucleotides having non-naturally occurring portions which function similarly. Such modified or substituted oligonucleotides are often desired over native forms because of desirable properties such as, for example, enhanced cellular uptake, enhanced affinity for a target nucleic acid and increased stability in the presence of nucleases.

According to the present invention, the oligonucleotides or "antisense compounds" include antisense oligonucleotides (e.g. RNA, DNA, mimetic, chimera, analog or homolog thereof), ribozymes, external guide sequence (EGS) oligonucleotides, siRNA compounds, single- or double-stranded RNA interference (RNAi) compounds such as siRNA compounds, saRNA, aRNA, and other oligomeric compounds which hybridize to at least a portion of the target nucleic acid and modulate its function. As such, they may be DNA, RNA, DNA-like, RNA-like, or mixtures thereof, or may be mimetics of one or more of these. These compounds may be singlestranded, double-stranded, circular or hairpin oligomeric compounds and may contain structural elements such as internal or terminal bulges, mismatches or loops. Antisense compounds are routinely prepared linearly but can be joined or otherwise prepared to be circular and/or branched. Anti-

sense compounds can include constructs such as, for example, two strands hybridized to form a wholly or partially double-stranded compound or a single strand with sufficient self-complementarity to allow for hybridization and formation of a fully or partially double-stranded compound. The two strands can be linked internally leaving free 3' or 5' termini or can be linked to form a continuous hairpin structure or loop. The hairpin structure may contain an overhang on either the 5' or 3' terminus producing an extension of single stranded character. The double stranded compounds optionally can include overhangs on the ends. Further modifications can include conjugate groups attached to one of the termini, selected nucleotide positions, sugar positions or to one of the internucleoside linkages. Alternatively, the two strands can be linked via a non-nucleic acid moiety or linker group. When formed from only one strand, dsRNA can take the form of a self-complementary hairpin-type molecule that doubles back on itself to form a duplex. Thus, the dsRNAs can be fully or partially double stranded. Specific modulation of gene 20 expression can be achieved by stable expression of dsRNA hairpins in transgenic cell lines. When formed from two strands, or a single strand that takes the form of a self-complementary hairpin-type molecule doubled back on itself to form a duplex, the two strands (or duplex-forming regions of a 25 single strand) are complementary RNA strands that base pair in Watson-Crick fashion.

Once introduced to a system, the compounds of the invention may elicit the action of one or more enzymes or structural proteins to effect cleavage or other modification of the target nucleic acid or may work via occupancy-based mechanisms. In general, nucleic acids (including oligonucleotides) may be described as "DNA-like" (i.e. generally having one or more 2'-deoxy sugars and, generally, T rather than U bases) or "RNA-like" (i.e., generally having one or more 2'-hydroxyl or 2'-modified sugars and, generally U rather than T bases). Nucleic acid helices can adopt more than one type of structure, most commonly the A- and B-forms. It is believed that, in general, oligonucleotides which have B-form-like struc- 40 ture are "DNA-like" and those which have A-formlike structure are "RNA-like." In some (chimeric) embodiments, an antisense compound may contain both A- and B-form regions.

The antisense compounds in accordance with this inven- 45 tion can comprise an antisense portion from about 5 to about 80 nucleotides (i.e. from about 5 to about 80 linked nucleosides) in length. This refers to the length of the antisense strand or portion of the antisense compound. In other words, a single-stranded antisense compound of the invention comprises from 5 to about 80 nucleosides, and a double-stranded antisense compound of the invention (such as a dsRNA, for example) comprises a sense and an antisense strand or portion of 5 to about 80 nucleotides in length. One of ordinary skill in the art will appreciate that this comprehends antisense por- 55 tions of 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 3, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, or 80 nucleotides in length, or 60 any range therewithin.

In one embodiment, the antisense compounds of the invention have antisense portions of 10 to 50 nucleotides in length. One having ordinary skill in the art will appreciate that this embodies oligonucleotides having antisense portions of 10, 65 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44,

34

45, 46, 47, 48, 49, or 50 nucleotides in length, or any range therewithin. In some embodiments, the oligonucleotides are 15 nucleotides in length.

In one embodiment, the antisense or oligonucleotide compounds of the invention have antisense portions of 12 or 13 to 30 nucleotides in length. One having ordinary skill in the art will appreciate that this embodies antisense compounds having antisense portions of 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 or 30 nucleotides in length, or any range therewithin.

In another embodiment, the oligomeric compounds of the present invention also include variants in which a different base is present at one or more of the nucleotide positions in the compound. For example, if the first nucleotide is an adenosine, variants may be produced which contain thymidine, guanosine or citidine at this position. This may be done at any of the positions of the antisense or dsRNA compounds. These compounds are then tested using the methods described herein to determine their ability to inhibit expression of a target nucleic acid.

In some embodiments, homology, sequence identity or complementarity, between the antisense compound and target is from about 40% to about 60%. In some embodiments, homology, sequence identity or complementarity, is from about 60% to about 70%. In some embodiments, homology, sequence identity or complementarity, is from about 70% to about 80%. In some embodiments, homology, sequence identity or complementarity, is from about 80% to about 90%. In some embodiments, homology, sequence identity or complementarity, is about 90%, about 92%, about 94%, about 95%, about 96%, about 97%, about 98%, about 99% or about 100%.

In another embodiment, the antisense oligonucleotides, such as for example, nucleic acid molecules set forth in SEQ ID NOS: 6 to 45 comprise one or more substitutions or modifications. In one embodiment, the nucleotides are substituted with locked nucleic acids (LNA).

In another embodiment, the oligonucleotides target one or more regions of the nucleic acid molecules sense and/or antisense of coding and/or non-coding sequences associated with Pancreatic Developmental gene and the sequences set forth as SEQ ID NOS: 1 to 12. The oligonucleotides are also targeted to overlapping regions of SEQ ID NOS: 1 to 12.

Certain oligonucleotides of this invention are chimeric oligonucleotides. "Chimeric oligonucleotides" or "chimeras," in the context of this invention, are oligonucleotides which contain two or more chemically distinct regions, each made up of at least one nucleotide. These oligonucleotides typically contain at least one region of modified nucleotides that confers one or more beneficial properties (such as, for example, increased nuclease resistance, increased uptake into cells, increased binding affinity for the target) and a region that is a substrate for enzymes capable of cleaving RNA:DNA or RNA:RNA hybrids. By way of example, RNase H is a cellular endonuclease which cleaves the RNA strand of an RNA:DNA duplex. Activation of RNase H, therefore, results in cleavage of the RNA target, thereby greatly enhancing the efficiency of antisense modulation of gene expression. Consequently, comparable results can often be obtained with shorter oligonucleotides when chimeric oligonucleotides are used, compared to phosphorothioate deoxyoligonucleotides hybridizing to the same target region. Cleavage of the RNA target can be routinely detected by gel electrophoresis and, if necessary, associated nucleic acid hybridization techniques known in the art. In one embodiment, a chimeric oligonucleotide comprises at least one region modified to increase target binding affinity, and, usually, a region that acts as a substrate for

RNAse H. Affinity of an oligonucleotide for its target (in this case, a nucleic acid encoding ras) is routinely determined by measuring the Tm of an oligonucleotide/target pair, which is the temperature at which the oligonucleotide and target dissociate; dissociation is detected spectrophotometrically. The bigher the Tm, the greater is the affinity of the oligonucleotide for the target.

Chimeric antisense compounds of the invention may be formed as composite structures of two or more oligonucleotides, modified oligonucleotides, oligonucleosides and/or oligonucleotides mimetics as described above. Such; compounds have also been referred to in die art as hybrids or gapmers. Representative United States patents that teach the preparation of such hybrid structures comprise, but are not limited to, U.S. Pat. Nos. 5,013,830; 5,149,797; 5,220,007; 15 5,256,775; 5,366,878; 5,403,711; 5,491,133; 5,565,350; 5,623,065; 5,652,355; 5,652,356; and 5,700,922, each of which is herein incorporated by reference.

In another embodiment, the region of the oligonucleotide which is modified comprises at least one nucleotide modified 20 at the 2' position of the sugar, most preferably a 2'-Oalkyl, 2'-O-alkyl-O-alkyl or 2'-fluoro-modified nucleotide. In other embodiments, RNA modifications include 2'-fluoro, 2'-amino and 2' O-methyl modifications on the ribose of pyrimidines, abasic residues or an inverted base at the 3' end 25 of the RNA. Such modifications are routinely incorporated into oligonucleotides and these oligonucleotides have been shown to have a higher Tm (i.e., higher target binding affinity) than; 2'-deoxyoligonucleotides against a given target. The effect of such increased affinity is to greatly enhance RNAi 30 olignucleotide inhibition of gene expression. RNAse H is a cellular endonuclease that cleaves the RNA strand of RNA: DNA duplexes; activation of this enzyme therefore results in cleavage of the RNA target, and thus can greatly enhance the efficiency of RNAi inhibition. Cleavage of the RNA target 35 can be routinely demonstrated by gel electrophoresis. In another embodiment, the chimeric oligonucleotide is also modified to enhance nuclease resistance. Cells contain a variety of exo- and endo-nucleases which can degrade nucleic acids. A number of nucleotide and nucleoside modifications 40 have been shown to make the oligonucleotide into which they are incorporated more resistant to nuclease digestion than the native oligodeoxynucleotide. Nuclease resistance is routinely measured by incubating oligonuclotides with cellular extracts or isolated nuclease solutions and measuring the extent of 45 intact oligonucleotide remaining over time, usually by gel electrophoresis. Oligonucleotides which have been modified to enhance their nuclease resistance survive intact for a longer time than unmodified oligonucleotides. A variety of oligonucleotide modifications have been demonstrated to enhance 50 or confer nuclease resistance. Oligonucleotides which contain at least one phosphorothioate modification are presently more preferred. In some cases, oligonucleotide modifications which enhance target binding affinity are also, independently, able to enhance nuclease resistance. Some desirable modifi- 55 cations can be found in De Mesmacker et al. (1995) Acc. Chem. Res., 28:366-374.

Specific examples of some oligonucleotides envisioned for this invention include those comprising modified backbones, for example, phosphorothioates, phosphotriesters, methyl 60 phosphonates, short chain alkyl or cycloalkyl intersugar linkages or short chain heteroatomic or heterocyclic intersugar linkages. Most are oligonucleotides with phosphorothioate backbones and those with heteroatom backbones, particularly CH2 —NH—O—CH2, CH,—N(CH3)—O—CH2 65 [known as a methylene(methylimino) or MMI backbone], CH2 —O—N (CH3)—CH2, CH2 —N (CH3)—N (CH3)—

36

CH2 and O-N (CH3)-CH2 -CH2 backbones, wherein the native phosphodiester backbone is represented as O—P O—CH). The amide backbones disclosed by De Mesmacker et al. (1995) Acc. Chem. Rev. 28:366-374 are also preferred. Also are oligonucleotides having morpholino backbone structures (Summerton and Weller, U.S. Pat. No. 5,034,506). In other embodiments, such as the peptide nucleic acid (PNA) backbone, the phosphodiester backbone of the oligonucleotide is replaced with a polyamide backbone, the nucleotides being bound directly or indirectly to the aza nitrogen atoms of the polyamide backbone. Oligonucleotides may also comprise one or more substituted sugar moieties, oligonucleotides comprise one of the following at the 2' position: OH, SH, SCH3, F, OCN, OCH3 OCH3, OCH3 O(CH2)n CH3, O(CH2)n NH2 or O(CH2)n CH3 where n is from 1 to about 10: C1 to C10 lower alkyl, alkoxyalkoxy, substituted lower alkyl, alkaryl or aralkyl; Cl; Br; CN; CF3; OCF3; O—, S—, or N-alkyl; O-, S-, or N-alkenyl; SOCH3; SO2 CH3; ONO2: NO2; N3; NH2; heterocycloalkyl; heterocycloalkaryl; aminoalkylamino; polyalkylamino; substituted silyl; an RNA cleaving group; a reporter group; an intercalator; a group for improving the pharmacokinetic properties of an oligonucleotide; or a group for improving the pharmacodynamic properties of an oligonucleotide and other substituents having similar properties. A modification includes 2'-methoxyethoxy[2'-O-CH2 CH2 OCH3, also known as 2'-O-(2-methoxyethyl)]. Other modifications include 2'-methoxy(2'-O—CH3), 2'-propoxy(2'-OCH2CH2CH3) and 2-fluoro(2'-F). Similar modifications may also be made at other positions on the oligonucleotide, particularly the 3' position of the sugar on the 3' terminal nucleotide and the 5' position of 5' terminal nucleotide. Oligonucleotides may also have sugar mimetics such as cyclobutyl in place of the pentofuranosyl group.

Oligonucleotides may also include, additionally or alternatively, nucleobase (often referred to in the art simply as "base") modifications or substitutions. As used herein, "unmodified" or "natural" nucleotides include adenine (A), guanine (G), thymine (T), cytosine (C) and uracil (U). Modified nucleotides include nucleotides found only infrequently or transiently in natural nucleic acids. e.g., hypoxanthine, 6-methyladenine, 5-Me pyrimidines, particularly 5-methylcytosine (also referred to as 5-methyl-2'-deoxycytosine and often referred to in the art as 5-Me-C), 5-hydroxymethylcytosine (HMC), glycosyl HMC and gentobiosyl HMC, as well as synthetic nucleosides. e.g., 2-aminoadenine, 2-(methylamino)adenine, 2-(imidazolylalkyl)adenine, 2-(aminoalklyamino)adenine or other heterosubstituted alkyladenines, 2-thiouracil, 2-thiothymine, 5-bromouracil, 5-hydroxymethyluracil, 8-azaguanine, 7-deazaguanine, N6(6-aminohexyl)adenine and 2,6-diaminopurine. A "universal" base known in the art, e.g., inosine, may be included, S-Me-C substitutions have been shown to increase nucleic acid duplex stability by 0.6-1.2° C. (Sanghvi, Y. S., in Crooke, S. T. and Lebleu, B., eds., Antisense Research and Applications, CRC Press, Boca Raton, 1993, pp. 276-278) and are presently base

Another modification of the oligonucleotides of the invention involves chemically linking to the oligonucleotide one or more moieties or conjugates which enhance the activity or cellular uptake of the oligonucleotide. Such moieties include but are not limited to lipid moieties such as a cholesterol moiety, a cholesteryl moiety, a thioether, e.g., hexyl-S-tritylthiol a thiocholesterol, an aliphatic chain, e.g., dodecandiol or undecyl residues, a phospholipid, e.g., di-hexadecyl-racglycerol or triethylammonium 1,2-di-O-hexadecyl-rac-glycero-3-H-phosphonate, a polyamine or a polyethylene glycol

chain or adamantane acetic acid. Oligonucleotides comprising lipophilic moieties, and methods for preparing such oligonucleotides are known in the art, for example, U.S. Pat. Nos. 5,138,045, 5,218,105 and 5,459,255.

It is not necessary for all positions in a given oligonucleotide to be uniformly modified, and in fact more than one of the aforementioned modifications may be incorporated in a single oligonucleotide or even at within a single nucleoside within an olignucleotide. The present invention also includes oligonucleotides which are chimeric oligonucleotides as 10 hereinbefore defined.

In another embodiment, the nucleic acid molecule of the present invention is conjugated with another moiety including but not limited to abasic nucleotides, polyether, polyamine, polyamides peptides, carbohydrates, lipid, or 15 polyhydrocarbon compounds. Those skilled in the art will recognize that these molecules can be linked to one or more of any nucleotides comprising the nucleic acid molecule at several positions on the sugar, base or phosphate group.

The oligonucleotides used in accordance with this inven- 20 tion may be conveniently and routinely made through the well-known technique of solid phase synthesis. Equipment for such synthesis is sold by several vendors including Applied Biosystems. Any other means for such synthesis may also be employed; the actual synthesis of the oligonucleotides 25 is well within the talents of one of ordinary skill in the art. It is also well known to use similar techniques to prepare other oligonucleotides such as the phosphorothioates and alkylated derivatives. It is also well known to use similar techniques and commercially available modified amidites and controlled- 30 pore glass (CPG) products such as biotin, fluorescein, acridine or psoralen-modified amidites and/or CPG (available from Glen Research, Sterling Va.) to synthesize fluorescently labeled, biotinylated or other modified oligonucleotides such as cholesterol-modified oligonucleotides.

In accordance width the invention, use of modifications such as the use of LNA monomers to enhance the potency, specificity and duration of action and broaden the routes of administration of oligonucleotides comprised of current chemistries such as MOE, ANA, FANA, PS etc. This can be 40 achieved by substituting some of the monomers in the current oligonucleotides by LNA monomers. The LNA modified oligonucleotide may have a size similar to the parent compound or may be larger or preferably smaller. It is that such LNA-modified oligonucleotides contain less than about 70%, more 45 preferably less than about 60%, most preferably less than about 50% LNA monomers and that their sizes are between about 5 and 25 nucleotides, more preferably between about 12 and 20 nucleotides.

Modified oligonucleotide backbones comprise, but are not 50 limited to, phosphorothioates, chiral phosphorothioates, phosphordithioates, phosphotriesters, aminoalkylphosphotriesters, methyl and other alkyl phosphonates comprising 3'alkylene phosphonates and chiral phosphonates, phosphinates, phosphoramidates comprising 3'-amino phosphoramidate and aminoalkylphosphoramidates, thionophosphoramidates, thionoalkylphosphorates, thionoalkylphosphotriesters, and boranophosphates having normal 3'-5' linkages, 2'-5' linked analogs of these, and those having inverted polarity wherein the adjacent pairs of nucleoside units are linked 3'-5' to 5'-3' or 2'-5' to 5'-2'. Various salts, mixed salts and free acid forms are also included.

Representative United States patents that teach the preparation of the above phosphorus containing linkages comprise, but are not limited to, U.S. Pat. Nos. 3,687,808; 4,469,863; 65 4,476,301; 5,023,243; 5,177,196; 5,188,897; 5,264,423; 5,276,019; 5,278,302; 5,286,717; 5,321,131; 5,399,676;

38

5,405,939; 5,453,496; 5,455,233; 5,466,677; 5,476,925; 5,519,126; 5,536,821; 5,541,306; 5,550,111; 5,563,253; 5,571,799; 5,587,361; and 5,625,050, each of which is herein incorporated by reference.

Modified oligonucleotide backbones that do not include a phosphorus atom therein have backbones that are formed by short chain alkyl or cycloalkyl internucleoside linkages, mixed heteroatom and alkyl or cycloalkyl internucleoside linkages, or one or more short chain heteroatomic or hetrocyclic internucleoside linkages. These comprise those having morpholino linkages (formed in pant from the sugar portion of a nucleoside); siloxane backbones; sulfide, sulfoxide and sulfone backbones; formacetyl and thioformacetyl backbones; methylene formacetyl and thioformacetyl backbones; alkene containing backbones; sulfamate backbones; methyleneimino and methylenehydrazino backbones; sulfonate and sulfonamide backbones; amide backbones; and others having mixed N, O, S and CH2 component parts.

Representative United States patents that teach the preparation of the above oligonucleosides comprise, but are not limited to, U.S. Pat. Nos. 5,034,506; 5,166,315; 5,185,444; 5,214,134; 5,216,141; 5,235,033; 5,264,562; 5,264,564; 5,405,938; 5,434,257; 5,466,677; 5,470,967; 5,489,677; 5,541,307; 5,561,225; 5,596,086; 5,602,240; 5,610,289; 5,602,240; 5,608,046; 5,610,289; 5,618,704; 5,623,070; 5,663,312; 5,633,360; 5,677,437; and 5,677,439, each of which is herein incorporated by reference.

In other olignucleotide mimetics, both the sugar and the internucleoside linkage, i.e., the backbone, of the nucleotide units are replaced with novel groups. The base units are maintained for hybridization with an appropriate nucleic acid target compound. One such oligomeric compound, an oligonucleotide mimetic that has been shown to have excellent hybridization properties, is referred to as a peptide nucleic 35 acid (PNA). In PNA compounds, the sugar-backbone of an oligonucleotide is replaced with an amide containing backbone, in particular an aminoethylglycine backbone. The nucleobases are retained and are bound directly or indirectly to aza nitrogen atoms of the amide portion of the backbone. Representative United States patents that teach the preparation of PNA compounds comprise, but are not limited to, U.S. Pat. Nos. 5,539,082; 3,714,331: and 5,719,262, each of which is herein incorporated by reference. Further teaching of PNA compounds can be found in Nielsen, et al. (1991) Science 254, 1497-1500.

In another embodiment of the invention the oligonucleotides with phosphorothioate backbones and oligonucleosides with heteroatom backbones, and in particular —CH2—NH—O—CH2—, —CH2—N(CH3)—O—CH2— known as a methylene(methylimino) or MMI backbone. —CH2—O—N (CH3)—CH2—, —CH2N(CH3)—N(CH3)—CH2—and —O—N(CH3)—CH2—CH2- wherein the native phosphodiester backbone is represented as —O—P—O—CH2—of the above referenced U.S. Pat. No. 5,489,677, and the amide backbones of the above referenced U.S. Pat. No. 5,602, 240. Also are oligonucleotides having morpholino backbone structures of the above-referenced U.S. Pat. No. 5,034,506.

Modified oligonucleotides may also contain one or more substituted sugar moieties, oligonucleotides comprise one of the following at the 2' position: OH; F; O—, S—, or N-alkyl; O—, S—, or N-alkenyl; O—, S— or N-alkynyl; or O alkyl-O-alkyl, wherein the alkyl, alkenyl and alkynyl may be substituted or unsubstituted C to CO alkyl or C2 to CO alkenyl and alkynyl. Particularly are O(CH2)n OmCH3, O(CH2)n, OCH3, O(CH2)nNH2. O(CH2)nCH3, O(CH2)nONH2, and O(CH2nON(CH2)nCH3)2 where n and m can be from 1 to about 10. Other oligonucleotides comprise one of the follow-

ing at the 2' position: C to CO, (lower alkyl, substituted lower alkyl, alkaryl, aralkyl, O-alkaryl or O-aralkyl, SH, SCH3, OCN, Cl, Br, CN, CF3, OCF3, SOCH3, SO2CH3, ONO2, NO2, N3, NH2, heterocycloalkyl, heterocycloalkaryl, aminoalkylamino, polyalkylamino, substituted silyl, an RNA 5 cleaving group, a reporter group, an intercalator, a group for improving the pharmacokinetic properties of an oligonucleotide, or a group for improving the pharmacodynamic properties of an oligonucleotide, and other substituents having similar properties. A modification comprises 2'-methoxyethoxy(2'-O—CH2CH2OCH3, also known as 2'-O-(2-methoxyethyl) or 2'-MOE) i.e., an alkoxyalkoxy group. A further modification comprises 2'-dimethylaminooxyethoxy, i.e., a O(CH2)2ON(CH3)2 group, also known as 2'-DMAOE, as described in examples herein below, and 2'-dimethylamino- 15 ethoxyethoxy (also known in the art as 2-O-dimethylamino-

Other modifications comprise 2'-methoxy(2'-O CH3), F). Similar modifications may also be made at other positions on the oligonucleotide, particularly the 3' position of the sugar on the 3' terminal nucleotide or in 2'-5' linked oligonucleotides and the 5' position of 5' terminal nucleotide. Oligonucleotides may also have sugar mimetics such as cyclobutyl 25 moieties in place of the pentofuranosyl sugar. Representative United States patents that teach the preparation of such modified sugar structures comprise, but are not limited to, U.S. Pat. Nos. 4,981,957; 5,118,800; 5,319,080; 5,359,044; 5,393,878; 5,446,137; 5,466,786; 5,514,785; 5,519,134; 5,567,811; 30 5,576,427; 5,591,722; 5,597,909; 5,610,300; 5,627,053; 5,639,873; 5,646,265; 5,658,873; 5,670,633; and 5,700,920, each of which is herein incorporated by reference.

ethoxyethyl or 2'-DMAEOE), i.e., 2'-O-CH2-O-CH2-N

(CH2)2.

Oligonucleotides may also comprise nucleobase (often refereed to in the art simply as "base") modifications or substi- 35 tutions. As used herein, "unmodified" or "natural" nucleotides comprise the purine bases adenine (A) and guanine (G), and the pyrimidine bases thymine (T), cytosine (C) and uracil (U). Modified nucleotides comprise other synthetic and natural nucleotides such as 5-methylcytosine (5-me-C), 5-hy-40 droxymethyl cytosine, xanthine, hypoxanthine, 2-aminoadenine, 6-methyl and other alkyl derivatives or adenine and guanine, 2-propyl and other alkyl derivatives of adenine and guanine, 2-thiouracil, 2-thiothymine and 2-thiocytosine, 5-halouracil and cytosine, 5-propynyl uracil and cytosine, 45 6-azo uracil, cytosine and thymine, 5-uracil (pseudo-uracil), 4-thiouracil, 8-halo, 8-amino, 8-thiol, 8-thioalkyl, 8-hydroxyl and other 8-substituted adenines and guanines, 5-halo particularly 3-bromo, 5-trifluoromethyl and other 5-substituted uracils and cytosines, 7-methylguanine and 7-methy- 50 ladenine, 8-azaguanine and 8-azaadenine, 7-deazaguanine and 7-deazaadenine and 3-deazaguanine and 3-deazaad-

Further, nucleotides comprise those disclosed in U.S. Pat. No. 3,687,808, those disclosed in 'The Concise Encyclopedia 55 of Polymer Science And Engineering', pages 858-859, Kroschwitz, J. I. ed. John Wiley & Sons, 1990, those disclosed by Englisch et al., 'Angewandle Chemie., International Edition, 1991, 30, page 613, and those disclosed by Sanghvi, Y. S. Chapter 15, 'Antisense Research and Applica- 60 tions', pages 289-302, Crooke, S. T. and Lebleu, B. ea. CRC Press, 1993. Certain or these nucleotides are particularly useful for increasing the binding affinity of the oligomeric compounds of the invention. These comprise 5-substituted pyrimidines, 6-azapyrimidines and N-2, N-6 and 0-6 substituted 65 purines, comprising 2-aminopropyladenine, 5-propynyluracil and 5-propynylcytosine, 5-methylcytosine substitutions

40

have been shown to increase nucleic acid duplex stability by 0.6-1.2° C. (Sanghvi, Y. S., Crooke, S. T. and Lebleu, B., eds, 'Antisense Research and Applications', CRC Press, Boca Raton, 1993, pp. 276-278) and are presently base substitutions, even more particularly when combined with 2'-Omethoxyethyl sugar modifications.

Representative United States patents that teach the preparation of the above noted modified nucleotides as well as other modified nucleotides comprise, but are not limited to, U.S. Pat. No. 3,687,808, as well as U.S. Pat. Nos. 4,845,205; 5,130,302; 5,134,066; 5,175,273; 5,367,066; 5,432,272; 5,457,187; 5,459,255; 5,484,908; 5,502,177; 5,525,711; 5,552,540; 5,387,469; 5,596,091; 5,614,617; 5,750,692, and 5,681,941, each of which is herein incorporated by reference.

Another modification of the oligonucleotides of the invention involves chemically linking to the oligonucleotide one or more moieties or conjugates, which enhance the activity, cellular distribution, or cellular uptake of the oligonucleotide.

Such moieties comprise but are not limited to, lipid moi-2'-aminopropoxy(2'-O CH2CH2CH2NH2) and 2'-fluoro (2'- 20 eties such as a cholesterol moiety, cholic acid, a thioether, e.g., hexyl-S-tritylthiol, a thiocholesterol, an aliphatic chain, e.g., dodecandiol or undecyl residues, a phospholipid, e.g., di-hexadecyl-rac-glycerol or triethylammonium 1,2-di-Ohexadecyl-rac-glycero-3-H-phosphonate, a polyamine or a polyethylene glycol chain, or adamantane acetic acid, a palmityl moiety, or an octadecylamine or hexylamino-carbonyl-t oxycholesterol moiety.

Representative United States patents that teach the preparation of such oligonucleotides conjugates comprise, but are not limited to, U.S. Pat. Nos. 4,828,979; 4,948,882; 5,218, 105; 5,525,465; 5,541,313, 5,545,730; 5,552,538; 5,714,717, 5,580,731; 5,580,731; 5,591,584; 5,109,124; 5,118,802; 5,138,045; 5,414,077; 5,486,603; 5,512,439; 5,578,718; 5,608,046; 4,587,044; 4,605,735; 4,667,025; 4,762,779; 4,789,737; 4,824,941; 4,835,263; 4,876,335; 4,904,582; 4,958,013; 5,082,830; 5,112,963; 5,214,136; 5,082,830; 5,112,963; 5,214,136; 5,245,022; 5,254,469; 5,258,506; 5,262,536; 3,272,250; 5,292,873; 5,317,098; 5,371,241; 5,391,723; 5,416,203; 5,451,463; 5,510,475; 5,512,667; 5,514,785; 5,565,552; 5,567,810; 5,574,142; 5,585,481; 5,587,371; 5,595,726; 5,597,696; 5,599,923; 5,599,928 and 5,688,941, each of which is herein incorporated by reference.

Drug Discovery: The compounds of the present invention can also be applied in the areas of drug discovery and target validation. The present invention comprehends the use of the compounds and target segments identified herein in drug discovery efforts to elucidate relationships that exist between a Pancreatic Developmental gene polynucleotide and a disease state, phenotype, or condition. These methods include detecting or modulating a Pancreatic Developmental gene polynucleotide comprising contacting a sample, tissue, cell or organism with the compounds of the present invention, measuring the nucleic acid or protein level of a Pancreatic Developmental gene polynucleotide and/or a related phenotype or chemical endpoint at some time after treatment, and optionally comparing the measured value to a non-treated sample or sample treated with a further compound of the invention. These methods can also be performed in parallel or in combination with other experiments to determine the function of unknown genes for the process of target validation or to determine the validity of a particular gene product as a target for treatment or prevention of a particular disease, condition, or phenotype.

Assessing Up-regulation or Inhibition of Gene Expression:

Transfer of an exogenous nucleic acid into a host cell or organism can be assessed by directly detecting the presence of the nucleic acid in the cell or organism. Such detection can

be achieved by several methods well known in the art. For example, the presence of the exogenous nucleic acid can be detected by Southern blot or by a polymerase chain reaction (PCR) technique using primers that specifically amplify nucleotide sequences associated with the nucleic acid. 5 Expression of the exogenous nucleic acids can also be measured using conventional methods including gene expression analysis. For instance, mRNA produced from an exogenous nucleic acid can be detected and quantified using a Northern blot and reverse transcription PCR (RT-PCR).

Expression of RNA from the exogenous nucleic acid can also be detected by measuring an enzymatic activity or a reporter protein activity. For example, antisense modulatory activity can be measured indirectly as a decrease or increase in target nucleic acid expression as an indication that the 15 exogenous nucleic acid is producing the effector RNA. Based on sequence conservation, primers can be designed and used to amplify coding regions of the target genes. Initially, the most highly expressed coding region from each gene can be used to build a model control gene, although any coding or 20 non coding region can be used. Each control gene is assembled by inserting each coding region between a reporter coding region and its poly(A) signal. These plasmids would produce an mRNA with a reporter gene in the upstream non-coding region. The effectiveness of individual antisense oligonucleotides would be assayed by modulation of the reporter gene. Reporter genes useful in the methods of the present invention include acetohydroxyacid synthase (AHAS), alkaline phosphatase (AP), beta galactosidase 30 (LacZ), beta glucuronidase (GUS), chloramphenicol acetyltransferase (CAT), green fluorescent protein (GFP), red fluorescent protein (RFP), yellow fluorescent protein (YFP), cyan fluorescent protein (CFP), horseradish peroxidase (HRP), luciferase (Luc), nopaline synthase (NOS), octopine synthase 35 (OCS), and derivatives thereof. Multiple selectable markers are available that confer resistance to ampicillin, bleomycin, chloramphenicol, gentamycin, hygromycin, kanamycin, lincomycin, methotrexate, phosphinothricin, puromycin, and tetracycline. Methods to determine modulation of a reporter 40 expresses, or is made competent to express products of the gene are well known in the art, and include, but are not limited to, fluorometric methods (e.g. fluorescence spectroscopy, Fluorescence Activated Cell Sorting (FACS), fluorescence microscopy), antibiotic resistance determination.

NEUROD1, HNF4A, MAFA, PDX1, NKX6-1 proteins 45 and mRNA expression can be assayed using methods known to those of skill in the art and described elsewhere herein. For example, immunoassays such as the ELISA can be used to measure protein levels. Pancreatic Developmental gene antibodies for ELISAs are available commercially, e.g., from 50 R&D Systems (Minneapolis, Minn.), Abcam, Cambridge,

In embodiments, NEUROD1, HNF4A, MAFA, PDX1, NKX6-1 expression (e.g., mRNA or protein) in a sample antisense oligonucleotide of the invention is evaluated by comparison with Pancreatic Developmental gene expression in a control sample. For example, expression of the protein or nucleic acid can be compared using methods known to those of skill in the art with that in a mock-treated or untreated 60 sample. Alternatively, comparison with a sample treated with a control antisense oligonucleotide (e.g., one having an altered or different sequence) can be made depending on the information desired. In another embodiment, a difference in the expression of the Pancreatic Developmental gene protein 65 or nucleic acid in a treated vs. an untreated sample can be compared with the difference in expression of a different

42

nucleic acid (including any standard deemed appropriate by the researcher, e.g., a housekeeping gene) in a treated sample vs. an untreated sample.

Observed differences can be expressed as desired, e.g., in the form of a ratio or fraction, for use in a comparison with control. In embodiments, the level of a Pancreatic Developmental gene mRNA or protein, in a sample treated with an antisense oligonucleotide of the present invention, is increased or decreased by about 1.25-fold to about 10-fold or more relative to an untreated sample or a sample treated with a control nucleic acid. In embodiments, the level of a Pancreatic Developmental gene mRNA or protein is increased or decreased by at least about 1.25-fold, at least about 1.3-fold, at least about 1.4-fold, at least about 1.5-fold, at least about 1.6-fold, at least about 1.7-fold, at least about 1.8-fold, at least about 2-fold, at least about 2.5-fold, at least about 3-fold, at least about 3.5-fold, at least about 4-fold, at least about 4.5fold, at least about 5-fold, at least about 5.5-fold, at least about 6-fold, at least about 6.5-fold, at least about 7-fold, at least about 7.5-fold, at least about 8-fold, at least about 8.5-fold, at least about 9-fold, at least about 9.5-fold, or at least about 10-fold or more.

Kits, Research Reagents, Diagnostics, and Therapeutics

The compounds of the present invention can be utilized for portion of the gene and a potential RNAi target in the 3' 25 diagnostics, therapeutics, and prophylaxis, and as research reagents and components of kits. Furthermore, antisense oligonuclotides, which are able to inhibit gene expression with exquisite specificity, are often used by those of ordinary skill to elucidate the function of particular genes or so distinguish between functions of various members of a biological pathway.

> For use in kits and diagnostics and in various biological systems, the compounds of the present invention, either alone or in combination with other compounds or therapeutics, are useful as tools in differential and/or combinatorial analyses to elucidate expression patterns of a portion or the entire complement of genes expressed within cells and tissues.

> As used herein the term "biological system" or "system" is defined as any organism, cell, cell culture or tissue that Pancreatic Developmental genes. These include, but are not limited to, humans, transgenic animals, cells, cell cultures, tissues, xenografts, transplants and combinations thereof.

> As one non limiting example, expression patterns within cells or tissues treated with one or more antisense compounds are compared to control cells or tissues not treated with antisense compounds and the patterns produced are analyzed for differential levels of gene expression as they pertain, for example, to disease association, signaling pathway, cellular localization, expression level, size, structure or function of the genes examined. These analyses can be performed on stimulated or unstimulated cells and in the presence or absence of other compounds that affect expression patterns.

Examples of methods of gene expression analysis known (e.g., cells or tissues in vivo or in vitro) treated using an 55 in the art include DNA arrays or microarrays (Brazma and Vilo, (2000) FEBS Lett., 480, 17-24: Celis, et al. (2000) FEBS Lett., 480, 2-16). SAGE (serial analysis of gene expression) (Madden, et al. (2000) Drug Discov. Today, 5, 415-425). READS (restriction enzyme amplification of digested cDNAs) (Prashar and Weissman, (1999) Methods Enzymol., 303, 258-72). TOGA (total gene expression analysis) (Sutcliffe, et al., (2000) Proc. Natl. Acad. Sci. U.S.A. 97, 1976-81), protein arrays and proteomics (Celis, at al., (2000) FEBS Lett., 480, 2-16; Jungblut, et al., Electrophoresis, 1999, 20, 2100-10), expressed sequence tag (EST) sequencing (Celis, et al., FEBS Lett., 2000, 480, 2-16; Larsson, et al., J. Biotechnol., 2000, 80, 143-57), subtractive RNA fingerprinting

(SuRF) (Fuchs, et al., (2000) Anal. Biochem. 286, 91-98; Larson, et al., (2000) Cytometry 41, 203-208), subtractive cloning, differential display (DD) (Jurecic and Belmont, (2000) Curr. Opin. Microbiol. 3, 316-21), comparative genomic hybridization (Carulli, et al., (1998) J. Cell Bio- 5 chem. Suppl., 31, 286-96), FISH (fluorescent in situ hybridization) techniques (Going and Gusterson. (1999) Eur. J. Cancer, 35, 1895-904) and mass spectrometry methods (To. Comb. (2000) Chem. High Throughput Screen, 3, 235-41).

The compounds of the invention are useful for research and 10 diagnostics, because these compounds hybridize to nucleic acids encoding a Pancreatic Developmental gene. For example, oligonucleotides that hybridize with such efficiency and under such conditions as disclosed herein as to be effective Pancreatic Developmental gene modulators are effective 15 primers or probes under conditions favoring gene amplification or detection, respectively. These primers and probes are useful in methods requiring the specific detection of nucleic acid molecules encoding a Pancreatic Developmental gene and in the amplification of said nucleic acid molecules for 20 detection or for use in further studies of a Pancreatic Developmental gene. Hybridization of the antisense oligonucleotides, particularly the primers and probes, of the invention with a nucleic acid encoding a Pancreatic Developmental may include conjugation of an enzyme to the oligonucleotide, radiolabeling of the oligonucleotide, or any other suitable detection means. Kits using such detection means for detecting the level of a Pancreatic Developmental gene in a sample may also be prepared.

The specificity and sensitivity of antisense are also harnessed by those of skill in the art for therapeutic uses. Antisense compounds have been employed as therapeutic moieties in the treatment of disease states in animals, including humans. Antisense oligonucleotide drugs have been safely 35 and effectively administered to humans and numerous clinical trials are presently underway. It is thus established that antisense compounds can be useful therapeutic modalities that can be configured to be useful in treatment regimes for the treatment of cells, tissues and animals, especially humans. 40

For therapeutics, an animal, preferably a human, suspected of having a disease or disorder which can be treated by modulating the expression of a Pancreatic Developmental gene polynucleotide is treated by administering antisense compounds in accordance with this invention. For example, in one 45 non-limiting embodiment, the methods comprise the step of administering to the animal in need of treatment, a therapeutically effective amount of a Pancreatic Developmental gene modulator. The Pancreatic Developmental gene modulators of the present invention effectively modulate the activity of a 50 Pancreatic Developmental gene or modulate the expression of a Pancreatic Developmental gene protein. In one embodiment, the activity or expression of a Pancreatic Developmental gene in an animal is inhibited by about 10% as compared to a control. Preferably, the activity or expression of a Pan- 55 creatic Developmental gene in an animal is inhibited by about 30%. More preferably, the activity or expression of a Pancreatic Developmental gene in an animal is inhibited by 50% or more. Thus, the oligomeric compounds modulate expression of a Pancreatic Developmental gene mRNA by at least 10%, 60 by at least 50%, by at least 25%, by at least 30%, by at least 41%, by at last 50%, by at least 60%, by at leas 70%, by at least 75%, by at least 80%, by at least 85%, by at least 90%, by at least 95%, by at least 98%, by a least 99%, or by 100% as compared to a control.

In one embodiment the activity or expression of a Pancreatic Developmental gene and/or in an animal is increased by 44

about 10% as compared to a control. Preferably, the activity or expression of a Pancreatic Developmental gene in an animal is increased by about 30%. More preferably, the activity or expression of a Pancreatic Developmental gene in an animal is increased by 50% or more. Thus, the oligomeric compounds modulate expression of a Pancreatic Developmental gene mRNA by at least 10%, by at least 50%, by at least 25%, by at least 30%, by at least 40%, by at least 50%, by at least 60%, by at least 70%, by at least 75%, by at least 80%, by at least 85%, by at as 90%, by at least 95%, by at last 98%, by at last 99%, or by 100% as compared to a control.

For example, the reduction of the expression or a Pancreatic Developmental gene may be measured in scrum, blood, adipose tissue, liver or any other body fluid, tissue or organ of the animal. Preferably, the cells contained within said fluids, tissues or organs being analyzed contain a nucleic acid molecule encoding Pancreatic Developmental gene peptides and/ or the Pancreatic Developmental gene protein itself.

The compounds of the invention can be utilized in pharmaceutical compositions by adding an effective amount of a compound to a suitable pharmaceutically acceptable diluent or carrier. Use of the compounds and methods of the invention may also be useful prophylactically.

Conjugates: Another modification of the oligonucleotides gene can be detected by means known in the art. Such means 25 of the invention involves chemically linking to the oligonucleotide one or more moieties or conjugates that enhance the activity cellular distribution or cellular uptake of the oligonucleotide. These moieties or conjugates can include conjugate groups covalently bound to functional groups such as primary or secondary hydroxyl groups. Conjugate groups of the invention include intercalator, reporter molecules, polyamines, polyamides, polyethylene glycols, polyethers, groups that enhance the pharmacodynamic properties of oligomers and groups that enhance the pharmacokinetic properties of oligomers. Typical conjugate groups include cholesterols, lipids, phospholipids, biotin, phenazine, folate, phenanthridine, anthraquinone, acridine, fluoresceins, rhodamines, coumarins, and dyes. Groups that enhance the pharmacodynamic properties, in the context of this invention, include groups that improve uptake, enhance resistance to degradation, and/or strengthen sequence-specific hybridization with the target nucleic acid. Groups that enhance the pharmacokinetic properties, in the context of this invention, include groups that improve uptake, distribution, metabolism or excretion of the compounds of the present invention. Representative conjugate groups are disclosed in International Patent Application No. PCT/US92/09196, filed Oct. 23, 1992, and U.S. Pat. No. 6,287,860, which are incorporated herein by reference. Conjugate moieties include, but are not limited to, lipid moieties such as a cholesterol moiety, cholic acid, a thioether, e.g., hexyl-5-tritylthiol, a thiocholesterol, an aliphatic chain, e.g., dodecandiol or undecyl residues, a phospholipid, e.g., di-hexadecyl-rac-glycerol or triethylammonium 1,2-di-O-hexadecyl-rac-glycero-3-Hphosphonate a polyamine or a polyethylene glycol chain, or adamantane acetic acid, a palmityl moiety, or an octadocylamine or hexylamino-carbonyl-oxycholesterol moiety. Oligonucleotides of the invention may also be conjugated to active drug substances, for example, aspirin, warfarin, phenylbutazone, ibuprofen, suprofen, fenbufen, ketoprofen, (S)-(+)-pranoprofen, carprofen dansylsarcosine, 2,3,5-triiodobenzoic acid, flutenamic acid, folinic acid, a benzothiadiazide, chlorothiazide, a diazepine, indomethicin, a barbiturate, a cephalosporin, a sulfa drug, on antidiabetic, an antibacterial or an antibiotic.

> Representative United States patents that teach the preparation of such oligonucleotides conjugates include, but are not limited to, U.S. Pat. Nos. 4,828,979; 4,948,882; 5,218,

105; 5,525,465; 5,541,313; 5,545,730; 5,552,538; 5,578,717; 5,580,731; 5,580,731; 5,591,584; 5,109,124; 5,118,802; 5,138,045; 5,414,077; 5,486,603; 5,512,439; 5,578,718; 5,608,046; 4,587,044; 4,605,735; 4,667,025; 4,762,779; 4,789,737; 4,824,941; 4,835,263; 4,876,335; 4,904,582; 54,958,013; 5,082,830; 5,112,963; 5,214,136; 5,082,830; 5,112,963; 5,214,136; 5,082,830; 5,112,963; 5,214,136; 5,245,022; 5,254,469; 5,258,506; 5,262,536; 5,272,250; 5,292,873; 5,317,098; 5,371,241; 5,391,723; 5,416,203; 5,451,463; 5,510,475; 5,512,667; 5,514,785; 5,565,552; 5,567,810; 5,574,142; 5,585,481; 105,587,371; 5,595,726; 5,597,696; 5,599,923; 5,599,928 and 5,688,941.

Formulations: The compounds of the invention may also be admixed, encapsulated, conjugated or otherwise associated with other molecules, molecule structures or mixtures of 15 compounds, as for example, liposomes, receptor-targeted molecules, oral, rectal, topical or other formulations, for assisting in uptake, distribution and/or absorption. Representative United States patents that teach the preparation of such uptake, distribution and/or absorption-assisting formulations 20 include, but are not limited to, U.S. Pat. Nos. 5,108,921; 5,354,844; 5,416,016; 5,459,127; 5,521,291; 5,543,165; 5,547,932; 5,583,020; 5,591,721; 4,426,330; 4,534,899; 5,013,556; 5,108,921; 5,213,804; 5,227,170; 5,264,221; 5,356,633; 5,395,619; 5,416,016; 5,417,978; 5,462,854; 25 5,469,854; 5,512,295; 5,527,528; 5,534,259; 5,543,152; 5,556,948; 5,580,575; and 5,595,756, each of which is herein incorporated by reference.

Although, the antisense oligonucleotides do not need to be administered in the context of a vector in order to modulate a 30 target expression and/or function, embodiments of the invention relates to expression vector constructs for the expression of antisense oligonucleotides, comprising promoters, hybrid promoter gene sequences and possess a strong constitutive promoter activity, or a promoter activity which can be 35 induced in the desired case.

In an embodiment, invention practice involves administering at least one of the foregoing antisense oligonucleotides with a suitable nucleic acid delivery system. In one embodiment, that system includes a non-viral vector operably linked 40 to the polynucleotide. Examples of such nonviral vectors include the oligonucleotide alone (e.g. any one or more of SEQ ID NOS: 13 to 45) or in combination with a suitable protein, polysaccharide or lipid formulation.

Additionally suitable nucleic acid delivery systems include 45 viral vector, typically sequence from at least one of an adenovirus, adenovirus-associated virus (AAV), helper-dependent adenovirus, retrovirus, or hemagglutination virus of Japan-liposome (HVJ) complex. Preferably, the viral vector comprises a strong eukaryotic promoter operably linked to 50 the polynucleotide e.g., a cytomegalovirus (CMV) promoter.

Additionally vectors include viral vectors, fusion proteins and chemical conjugates. Retroviral vectors include Moloney murine leukemia viruses and HIV-based viruses. One HIV-based viral vector comprises at least two vectors wherein the 55 gag and pot genes are from an HIV genome and the cnv gene is from another virus. DNA viral vectors are preferred. These vectors include pox vectors such as orthopox or avipox vectors, herpesvirus vectors such as a herpes simplex I virus (HSV) vector, Adenovirus Vectors and Adeno-associated 60 Virus Vectors).

The antisense compounds of the invention encompass any pharmaceutically acceptable salts, esters, or salts of such esters, or any other compound which, upon administration to an animal, including a human, is capable of providing (directly or indirectly) the biologically active metabolic or residue thereof.

46

The term "pharmaceutically acceptable salts" refers to physiologically and pharmaceutically acceptable salts of the compounds of the invention: i.e., salts that retain the desired biological activity of the parent compound and do not impart undesired toxicological effects thereto. For oligonucleotides, examples of pharmaceutically acceptable salts and their uses are further described in U.S. Pat. No. 6,287,860, which is incorporated herein by reference.

The present invention also includes pharmaceutical compositions and formulations that include the antisense compounds of the invention. The pharmaceutical compositions of the present invention may be administered in a number of ways depending upon whether local or systemic treatment is desired and upon the area to be treated. Administration may be topical (including ophthalmic and to mucous membranes including vaginal and rectal delivery), pulmonary, e.g., by inhalation or insufflation of powders or aerosols, including by nebulizer; intratracheal, intranasal, epidermal and transdermal), oral or parenteral. Parenteral administration includes intravenous, intraarterial, subcutaneous, intraperitoneal or intramuscular injection or infusion; or intracranial, e.g., intrathecal or intraventricular, administration.

For treating tissues in the central nervous system, administration can be made by, e.g., injection or infusion into the cerebrospinal fluid. Administration of antisense RNA into cerebrospinal fluid is described, e.g., in U.S. Pat. App. Pub. No. 2007/0117772, "Methods for slowing familial ALS disease progression," incorporated herein by reference in its entirety.

When it is intended that the antisense oligonucleotide of the present invention be administered to cells in the central nervous system, administration can be with one or more agents capable of promoting penetration of the subject antisense oligonucleotide across the blood-brain barrier. Injection can be made, e.g., in the entorhinal cortex or hippocampus. Delivery of neurotrophic factors by administration of an adenovirus vector to motor neurons in muscle tissue is described in, e.g., U.S. Pat. No. 6,632,427, "Adenoviral-vector-mediated gene transfer into medullary motor neurons." incorporated herein by reference. Delivery of vectors directly to the brain, e.g., the striatum, the thalamus, the hippocampus, or the substantia nigra; is known in the art and described, e.g., in U.S. Pat. No. 6,756,523, "Adenovirus vectors for the transfer of foreign genes into cells of the central nervous system particularly in brain," incorporated herein by reference. Administration can be rapid as by injection or made over a period of time as by slow infusion or administration of slow release formulations.

The subject antisense oligonucleotides can also be linked or conjugated with agents that provide desirable pharmaceutical or pharmacodynamic properties. For example, the antisense oligonucleotide can be coupled to any substance, known in the art to promote penetration or transport across the blood-brain barrier, such as an antibody to the transferrin receptor, and administered by intravenous injection. The antisense compound can be linked with a viral vector, for example, that makes the antisense compound more effective and/or increases the transport of the antisense compound across the blood-brain barrier. Osmotic blood brain barrier disruption can also be accomplished by, e.g., infusion of sugars including, but not limited to, meso erythritol, xylitol, D(+) galactose, D(+) lactose, D(+) xylose, dulcitol, myoinositol, L(-) fructose, D(-) mannitol, D(+) glucose, D(+) arabinose, D(-) arabinose, cellobiose, D(+) maltose, D(+) raffinose, L(+) rhamnose, D(+) melibiose, D(-) ribose, adonitol, D(+) arabitol, L(-) arabitol, D(+) fucose, L(-) fucose, D(-) lyxose, L(+) lyxose, and L(-) lyxose, or amino acids

including, but not limited to, glutamine, lysine, arginine, asparagine, aspartic acid, cysteine, glutamic acid, glycine, histidine, leucine, methionine, phenylalanine, proline, serine, threonine, tyrosine, valine, and taurine. Methods and materials for enhancing blood brain barrier penetration are 5 described, e.g., in U.S. Pat. No. 4,866,042, "Method for the delivery of genetic material across the blood brain barrier." U.S. Pat. No. 6,294,520, "Material for passage through the blood-brain barrier," and U.S. Pat. No. 6,936,589, "Parenteral delivery systems," all incorporated herein by reference in 10 their entirety.

The subject antisense compounds may be admixed, encapsulated, conjugated or otherwise associated with other molecules, molecule structures or mixtures of compounds, for example, liposomes, receptor-targeted molecules, oral, rectal, topical or other formulations, for assisting in uptake, distribution and/or absorption. For example, cationic lipids may be included in the formulation to facilitate oligonucleotide uptake. One such composition shown to facilitate uptake is LIPOFECTIN (available from GIBCO-BRL, 20 Bethesda, Md.).

Oligonucleotides with at least one 2'-O-methoxyethyl modification are believed to be particularly useful for oral administration. Pharmaceutical compositions and formulations for topical administration may include transdermal 25 patches, ointments, lotions, creams, gels, drops, suppositories, sprays, liquids and powders. Conventional pharmaceutical carriers, aqueous, powder or oily bases, thickeners and the like may be necessary or desirable. Coated condoms, gloves and the like may also be useful.

The pharmaceutical formulations of the present invention, which may conveniently be presented in unit dosage form, may be prepared according to conventional techniques well known in the pharmaceutical industry. Such techniques include the step of bringing into association the active ingredients with the pharmaceutical carrier(s) or excipient(s). In general, the formulations are prepared by uniformly and intimately bringing into association the active ingredients with liquid carriers or finely divided solid carriers or both, and then, if necessary, shaping the product.

The compositions of the present invention may be formulated into any of many possible dosage forms such as, but not limited to, tablets, capsules, gel capsules, liquid syrups, soft gels, suppositories, and enemas. The compositions of the present invention may also be formulated as suspensions in 45 aqueous, non-aqueous or mixed media. Aqueous suspensions may further contain substances that increase the viscosity of the suspension including, for example, sodium carboxymethylcellulose, sorbitol and/or dextran. The suspension may also contain stabilizers.

Pharmaceutical compositions of the present invention include, but are not limited to, solutions, emulsions, foams and liposome-containing formulations. The pharmaceutical compositions and formulations of the present invention may comprise one or more penetration enhances, carriers, excipients or other active or inactive ingredients.

Emulsions are typically heterogeneous systems of one liquid dispersed in another in the form of droplets usually exceeding $0.1~\mu m$ in diameter. Emulsions may contain additional components in addition to the dispersed phases, and the 60 active drug that may be present as a solution in either the aqueous phase, oily phase or itself as a separate phase. Microemulsions are included as an embodiment of the present invention. Emulsions and their uses are well known in the art and are further described in U.S. Pat. No. 6,287,860.

Formulations of the present invention include liposomal formulations. As used in the present invention, the term "lipo-

48

some" means a vesicle composed of amphiphilic lipids arranged in a spherical bilayer or bilayers. Liposomes are unilamellar or multilamellar vesicles which have a membrane formed from a lipophilic material and an aqueous interior that contains the composition to be delivered. Cationic liposomes are positively charged liposomes that are believed to interact with negatively charged DNA molecules to form a stable complex. Liposomes that are pH-sensitive or negatively-charged are believed to entrap DNA rather than complex with it. Both cationic and noncationic liposomes have been used to deliver DNA to cells.

Liposomes also include "sterically stabilized" liposomes, a term which, as used herein, refers to liposomes comprising one or more specialized lipids. When incorporated into liposomes, these specialized lipids result in liposomes with enhanced circulation lifetimes relative to liposome slacking such specialized lipids. Examples of sterically stabilized liposomes are those in which pan of the vesicle-forming lipid portion of the liposome comprises one or more glycolipids or is derivatized with one or more hydrophilic polymers, such as a polyethylene glycol (PEG) moiety. Liposomes and their uses are further described in U.S. Pat. No. 6,287,860.

The pharmaceutical formulations and compositions of the present invention may also include surfactants. The use of surfactants in drug products, formulations and in emulsions is well known in the art. Surfactants and their uses are further described in U.S. Pat. No. 6,287,860, which is incorporated herein by reference.

In one embodiment, the present invention employs various penetration enhancers to effect the efficient delivery of nucleic acids, particularly oligonucleotides. In addition to adding the diffusion of non-lipophilic drugs across cell membranes, penetration enhancers also enhance the permeability of lipophilic drugs. Penetration enhancers may be classified as belonging to one of five broad categories, i.e., surfactants, fatty acids, bile salts, chelating agents, and non-chelating nonsurfactants. Penetration enhancers and their uses are further described in U.S. Pat. No. 6,287,860, which is incorporated herein by reference.

One of skill in the art will recognize that formulations are routinely designed according to their intended use, i.e. route of administration.

formulations for topical administration include those in which the oligonucleotides of the invention are in admixture with a topical delivery agent such as lipids, liposomes, fatty acids, fatty acid esters, steroids, chelating agents and surfactants, lipids and liposomes include neutral (e.g. diolcoylphosphatidyl DOPE ethanolamine, dimyristoylphosphatidyl choline DMPC, distearolyphosphatidyl choline) negative (e.g. dimyristoylphosphatidyl glycerol DMPG) and cationic (e.g. dioleoyhetramethylaminopropyl DOTAP and diolcoylphosphatidyl ethanolamine DOTMA).

For topical or other administration, oligonucleotides of the invention may be encapsulated within liposomes or may form complexes thereto, in particular to cationic liposomes. Alternatively, oligonucleotides may be complexed to lipids, in particular to cationic lipids, fatty acids and esters, pharmaceutically acceptable salts thereof, and their uses are further described in U.S. Pat. No. 6,287,860.

Compositions and formulations for oral administration include powders or granules, microparticulates, nanoparticulates, suspensions or solutions in water or non-aqueous media, capsules, gel capsules, sachets, tablets or minitablets. Thickeners, flavoring agents, diluents, emulsifiers, dispersing aids or binders may be desirable, oral formulations are those in which oligonucleotides of the invention are administered in conjunction with one or more penetration enhancers surfac-

tants and chelators, surfactants include fatty acids and/or esters or salts thereof, bile acids and/or salts thereof, bile acids/salts and fatty acids and their uses are further described in U.S. Pat. No. 6,287,860, which is incorporated herein by reference. Also are combinations of penetration enhancers, 5 for example, fatty acids/salts in combination with bile acids/salts. A particularly combination is the sodium salt of lauric acid, capric acid and UDCA. Further penetration enhancers include polyoxyethylene-9-lauryl ether, polyoxyethylene-20-cetyl ether. Oligonucleotides of the invention may be 10 delivered orally, in granular form including sprayed dried particles, or complexed to form micro or nanoparticles. Oligonucleotide complexing agents and their uses are further described in U.S. Pat. No. 6,287,860, which is incorporated herein by reference.

Compositions and formulations for parenteral, intrathecal or intraventricular administration may include sterile aqueous solutions that may also contain buffers, diluents and other suitable additives such as, but not limited to, penetration enhancers, carrier compounds and other pharmaceutically 20 acceptable carriers or excipients.

Certain embodiments of the invention provide pharmaceutical compositions containing one or more oligomeric compounds and one or more other chemotherapeutic agents that function by a non-antisense mechanism. Examples of such 25 chemotherapeutic agents include but are not limited to cancer chemotherapeutic drugs such as daunorubicin, daunomycin, dactinomycin, doxorubicin, epirubicin, idarubicin, esorubicin, bleomycin, mafosfamide, ifosfamide, cytosine arabinoside, bischloroethyl-nitrosurea, busulfan, mitomycin C, acti- 30 nomycin D, mithramycin, prednisone, hydroxyprogesterone, testosterone, tamoxifen, dacarbazine, procarbazine, hexamethylmelamine, pentamethylmelamine, mitoxantrone, amsacrine, chlorambucil, methylcyclohexylnitrosurea, nitrogen mustards, melphalan, cyclophosphamide, 6-mercaptopurine, 35 6-thioguanine, cytarabine, 5-azacytidine, hydroxyurea, deoxycoformycin, 4-hydroxyperoxycyclo-phosphoramide, 5-fluorouracil (5-FU), 5-fluorodeoxyuridine (5-FUdR), methotrexate (MTX), colchicine, taxol, vincristine, vinblastine, etoposide (VP-16), trimetrexate, irinotecan, topotecan, 40 gemcitabine, teniposide, cisplatin and diethylstilbestrol (DES). When used with the compounds of the invention, such chemotherapeutic agents may be used individually (e.g., 5-FU and oligonucleotide), sequentially (e.g., 5-FU and oligonucleotide for a period of time followed by MTX and 45 oligonucleotide), or in combination with one or more other such chemotherapeutic agents (e.g., 5-FU, MTX and oligonucleotide, or 5-FU, radiotherapy and oligonucleotide). Antiinflammatory drugs, including but not limited to nonsteroidal anti-inflammatory drugs and corticosteroids, and antiviral 50 drugs, including but not limited to ribivirin, vidarabine, acyclovir and ganciclovir, may also be combined in compositions of the invention. Combinations of antisense compounds and other non-antisense drugs are also within the scope of this invention. Two or more combined compounds may be used 55 together or sequentially.

In another related embodiment, compositions of the invention may contain one or more antisense compounds, particularly oligonucleotides, targeted to a first nucleic acid and one or more additional antisense compounds targeted to a second 60 nucleic acid target. For example, the first target may be a particular antisense sequence of a Pancreatic Developmental gene, and the second target may be a region from another nucleotide sequence. Alternatively compositions of the invention may contain two or more antisense compounds 65 targeted to different regions of the same Pancreatic Developmental gene nucleic acid target. Numerous examples of anti-

50

sense compounds are illustrated herein and others may be selected from among suitable compounds known in the art. Two or more combined compounds may be used together or sequentially.

Dosing:

The formulation of the rapeutic compositions and their subsequent administration (dosing) is believed to be within the skill of those in the art. Dosing is dependent on severity and responsiveness of the disease state to be treated, with the course of treatment lasting from several days to several months, or until a cure is effected or a diminution of the disease state is achieved. Optimal dosing schedules can be calculated from measurements of drug accumulation in the body of the patient. Persons of ordinary skill can easily determine optimum dosages, dosing methodologies and repetition rates. Optimum dosages may vary depending on the relative potency of individual oligonucleotides, and can generally be estimated based on EC50s found to be effective in in vitro and in vivo animal models. In general, dosage is from 0.01 µg to 100 g per kg of body weight, and may be given once or more daily, weekly, monthly or yearly, or even once every 2 to 20 years. Persons of ordinary skill in the art can easily estimate repetition rates for dosing based on measured residence times and concentrations of the drug in bodily fluids or tissues. Following successful treatment, it may be desirable to have the patient undergo maintenance therapy to prevent the recurrence of the disease state, wherein the oligonucleotide is administered in maintenance doses, ranging from 0.01 µg to 100 g per kg of body weight, once or more daily, to once every 20 years.

In embodiments, a patient is treated with a dosage of drug that is at least about 1, at least about 2, at least about 3, at least about 4, at least about 5, at least about 6, at least about 7, at least about 8, at least about 9, at least about 10, at least about 15, at least about 20, at least about 25, at least about 30, at least about 35, at least about 40, at least about 45, at least about 50 at least about 60, at least about 70, at least about 80, at least about 90, or at least about 100 mg/kg body weight. Certain injected dosages of antisense oligonucleotides are described, e.g., in U.S. Pat. No. 7,563,884. "Antisense modulation of PTP1B expression," incorporated herein by reference in its entirety.

While various embodiments of the present invention have been described above, it should be understood that they have been presented by way of example only, and not limitation. Numerous changes to the disclosed embodiments can be made in accordance with the disclosure herein without departing from the spirit or scope of the invention. Thus, the breadth and scope of the present invention should not be limited by any of the above described embodiments.

All documents mentioned herein are incorporated herein by reference. All publications and patent documents cited in this application are incorporated by reference for all purposes to the same extent as if each individual publication or patent document were so individually denoted. By their citation of various references in this document, Applicants do not admit any particular reference is "prior art" to their invention. Embodiments of inventive compositions and methods are illustrated in the following examples.

EXAMPLES

The following non-limiting Examples serve to illustrate selected embodiments of the invention. It will be appreciated that variations in proportions and alternatives in elements of

the components shown will be apparent to those skilled in the art and are within the scope of embodiments of the present invention.

Example 1

Design of Antisense Oligonucleotides Specific for a Nucleic Acid Molecule Antisense to a Pancreatic Developmental Gene and/or a Sense Strand of a Pancreatic Developmental Gene Polynucleotide

As indicated above the term "oligonucleotide specific for" or "oligonucleotide targets" refers to an oligonucleotide having a sequence (i) capable of forming a stable complex with a portion of the targeted gene, or (ii) capable of forming a stable 15 duplex with a portion of an mRNA transcript of the targeted gene.

Selection of appropriate oligonucleotides is facilitated by using computer programs that automatically align nucleic acid sequences and indicate regions of identity or homology. 20 Such programs are used to compare nucleic acid sequences obtained, for example, by searching databases such as Gen-Bank or by sequencing PCR products. Comparison of nucleic acid sequences from a range of species allows the selection of nucleic acid sequences that display an appropriate degree of 25 identity between species. In the case of genes that have not been sequenced. Southern blots are performed to allow a determination of the degree of identity between genes in target species and other species. By performing Southern blots at varying degrees of stringency, as is well known in the 30 art, it is possible so obtain an approximate measure of identity. These procedures allow the selection of oligonucleotides that exhibit a high degree of complementarity to target nucleic acid sequences in a subject to be controlled and a lower degree of complementarity to corresponding nucleic 35 acid sequences in other species. One skilled in the art will realize that there is considerable latitude in selecting appropriate regions of genes for use in the present invention.

An antisense compound is "specifically hybridizable" when binding of the compound to the target nucleic acid 40 interferes width the normal function of the target nucleic acid to cause a modulation of function and/or activity, and there is a sufficient degree of complementarity to avoid non-specific binding of the antisense compound to non-target nucleic acid sequences under conditions in which specific binding is 45 desired, i.e., under physiological conditions in the case of in vivo assays or therapeutic treatment, and under conditions in which assays are performed in the case of in vitro assays

The hybridization properties of the oligonucleotides described herein can be determined by one or more in vitro 50 assays as known in the art. For example, the properties of the oligonucleotides described herein can be obtained by determination of binding strength between the target natural antisense and a potential drug molecules using melting curve assay.

The binding strength between the target natural antisense and a potential drug molecule (Molecule) can be estimated using any of the established methods of measuring the strength of intermolecular interactions, for example, a melting curve assay.

Melting curve assay determines the temperature at which a rapid transition from double-stranded to single-stranded conformation occurs for the natural antisense/Molecule complex. This temperature is widely accepted as a reliable measure of the interaction strength between the two molecules.

A melting curve assay can be performed using a cDNA copy of the actual natural antisense RNA molecule or a syn-

52

thetic DNA or RNA nucleotide corresponding to the binding site of the Molecule. Multiple kits containing all necessary reagents to perform this assay are available (e.g. Applied Biosystems Inc. MeltDoctor kit). These kits include a suitable buffer solution containing one of the double strand DNA (dsDNA) binding dyes (such as AB1 HRM dyes, SYBR Green, SYTO, etc.). The properties of the dsDNA dyes are such that they emit almost no fluorescence in free form, but are highly fluorescent when bound to dsDNA.

To perform the assay the cDNA or a corresponding oligonucleotide are mixed with Molecule in concentrations defined by the particular manufacturer's protocols. The mixture is heated to 95° C. to dissociate all pre-formed dsDNA complexes, then slowly cooled to room temperature or other lower temperature defined by the kit manufacturer to allow the DNA molecules to anneal. The newly formed complexes are then slowly heated to 95° C. with simultaneous continuous collection of data on the amount of fluorescence that is produced by the reaction. The fluorescence intensity is inversely proportional to the amounts of dsDNA present in the reaction. The data can be collected using a real time PCR instrument compatible with the kit (e.g. ABI's StepOne Plus Real Time PCR System or LightTyper instrument, Roche Diagnostics, Lewes, UK).

Melting peaks are constructed by plotting the negative derivative of fluorescence with respect to temperature (–d (Fluorescence)/dT) on the y-axis) against temperature (x-axis) using appropriate software (for example LightTyper (Roche) or SDS Dissociation Curve, ABI). The data is analyzed to identify the temperature of the rapid transition from dsDNA complex to single strand molecules. This temperature is called Tm and is directly proportional to the strength of interaction between the two molecules. Typically, Tm will exceed 40° C.

Example 2

Modulation of a Pancreatic Developmental Gene Polynucleotide Treatment of HepG2 Cells with Antisense Oligonucleotides

HepG2 cells from ATCC (cat#HB-8065) were grown in growth media (MEM/EBSS (Hyclone cat #SH30024, or Mediatech cat #MT-10-010-CV)+10% FBS (Mediatech cat#MT35-011-CV)+penicillin/streptomycin (Mediatech cat#MT30-002-C1)) at 37° C. and 5% CO2. One day before the experiment the cells were replated at she density of $1.5 \times$ 105/ml into 6 well plates and incubated at 37° C. and 5% CO2. On the day of the experiment the media in the 6 well plates was changed to fresh growth media. All antisense oligonucleotide were diluted to the concentration of $20 \,\mu\text{M}$. Two μl of this solution was incubated with 400 μl of Opti-MEM media (Gibco cat#31985-070) and 4 μl of Lipofectamine 2000 (Invitogen cat#11668019) at room temperature for 20 55 min and applied to each well of the 6 well plates with HepG2 cells. A Similar mixture including 2 µl of water instead of the oligonucleotide solution was used for the mock-transfected controls. After 3-18 h of incubation at 37° C. and 5% CO2 the media was changed to fresh growth media, 48 h after addition of antisense oligonucleotides the media was removed and RNA was extracted from the cells using SV Total RNA Isolation System from Promega (cat #Z3105) or RNeasy Total RNA Isolation kit from Qiagen (cat#74181) following the manufacturer instructions. 600 ng of RNA was added to the reverse transcription reaction performed using Verso cDNA kit from Thermo Scientific (cat#AB1453B) or High Capacity cDNA Reverse Transcription Kit (cat#4368813) as described

in the manufacturer's protocol. The cDNA from this reverse transcription reaction was used to monitor gene expression by real time PCR using ABI Taqman Gene Expression Mix (cat#4369510) and primers/probes designed by ABI (Applied Biosystems Taqman Gene Expression Assay: 5 Hs01922995_s1, Hs01651425_s1, and Hs00426216_m1 by Applied Biosystems Inc. Foster City Calif.). The following PCR cycle was used: 50° C. for 2 min. 95° C. for 10 min. 40 cycles of (95° C. for 15 seconds, 60° C. for 1 min) using Mx4000 thermal cycler (Stratagene). Fold change in gene 10 expression after treatment with antisense oligonucleotides was calculated based on the difference in 18S-normalized dCt values between treated and mock-transfected samples. Results

Real time PCR results show that the fold change+standard 15 deviation in NeuroD1 mRNA after treatment of HepG2 cells with phosphorothioate oligonucleotides introduced using Lipofectamine 2000, as compared to control (FIG. 1).

Real time PCR results show that the levels of MAFA mRNA in HepG2 cells are significantly increased 48 h after 20 treatment with one of the oligos designed to MAFA antisense BM127748 (FIG. 3).

Real time PCR results show that the levels of PDX1 mRNA in HepG2 cells are significantly increased 48 h after treatment with one of the oligos designed to PDX1 antisense Hs.416201 25 (FIG. 4).

Treatment of 518A2 Cells with Antisense Oligonucleotides: 518A2 cells obtained from Albert Einstein-Montefiore Cancer Center, NY were grown in growth media (MEM/ EBSS (Hyclone cat #SH30024, or Mediatech cat #MT-10- 30 010-CV)+10% FBS (Mediatech cats MT35-011-CV)+penicillin/streptomycin (Mediatech cat#MT30-002-C1)) at 37° C. and 5% CO2. One day before the experiment the cells were replated at the density of 1.5×10/ml into 6 well plates and incubated at 37° C. and 5% CO2. On the day of the experi- 35 ment the media in the 6 well plates was changed to fresh growth media. All antisense oligonucleotides were diluted to the concentration of 20 µM. Two µl of this solution was incubated with 400 µl of Opti-MEM media (Gibco cat#31985-070) and 4 μl of Lipofectamine 2000 (Invitrogen $\,$ 40 $\,$ cat#11668019) at room temperature for 20 min and applied to each well of the 6 well plates with 518A2 cells. Similar mixture including 2 µl of water instead of the oligonucleotide solution was used for the mock-transfected controls. After 3-18 h of incubation at 37° C. and 5% CO2 the media was 45 changed to fresh growth media. 48 h after addition of antisense oligonucleotides the media was removed and RNA was extracted from the cells using SV Total RNA Isolation System from Promega (cat #723105) or RNeasy Total RNA isolation kit from Qiagen (cat#74181) following the manufacturers' 50 instructions. 600 ng of RNA was added to the reverse transcription reaction performed using Verso cDNA kit from Thermo Scientific (cat#AB1453B) or High Capacity cDNA Reverse Transcription Kit (cat#4368813 as described in the manufacturer's protocol. The cDNA from this reverse tran- 55 scription reaction was used to monitor gene expression by real time PCR using ABI Tagman Gene Expression Mix (cat#4369510) and primers/probes designed by ABI (Applied Biosystems Taqman Gene Expression Hs01023298_m1 by Applied Biosystems Inc., Foster City 60 Calif.). The following PCR cycle was used: 50° C. for 2 min, 95° C. for 2 min, 95° C. for 10 min, 40 cycles of (95° C. for 15 seconds, 60° C. for 1 min) using StepOne Plus Real Time PCR Machine (Applied Biosystems). Fold change in gene expression after treatment with antisense oligonucleotides 65 was calculated based on the difference in 18S-normalized dCt values between treated and mock-transfected samples.

54

Results: Real time PCR results show that the levels of HNF4A mRNA in 518A2 cells are significantly increased 48 h after treatment with oligos to HNF4A antisense transcripts BX099913, BC071794 and AF143870 (FIG. 2).

Treatment of MCF-7 Cells with Antisense Oligonucleotides:

MCF-7 cells from ATCC (cat#HTB-22) were grown in growth media (MEM/EBSS (Hyclone cat #SH30024, or Mediatech cat #MT-10-010-CV)+10% FBS (Mediatech cat#MT35-011-CV)+penicillin/streptomycin (Mediatech cat#MT30-002-C1)) at 37° C. and 5% CO₃. One day before the experiment the cells were replated at the density of $1.5 \times$ 10⁵/ml into 6 well plates and incubated at 37° C. and 5% CO₂. On the day of the experiment the media in the 6 well plates was changed to fresh growth media. All antisense oligonucleotides were diluted to the concentration of 20 µM. Two µl of this solution was incubated with 400 µl of Opti-MEM media (Gibco cat#31985-070) and 4 µl of Lipofectamine 2000 (Invitrogen cat#11668019) at room temperature for 20 min and applied to each well of the 6 well plates with MCF-7 cells. Similar mixture including 2 µl of water instead of the oligonucleotide solution was used for the mock-transfected controls. After 3-18 h of incubation at 37° C. and 5% CO2 the media was changed to fresh growth media 48 h after addition of antisense oligonucleotides the media was removed and RNA was extracted from the cells using SV Total RNA Isolation System from Promega (cat #Z3105) or RNeasy Total RNA Isolation kit from Qiagen (cat#74181) following the manufacturers instructions. 600 ng of RNA was added to the reverse transcription reaction performed using Verso cDNA kit from Thermo Scientific (cat#AB1453B) or High Capacity cDNA Reverse Transcription Kit (cat#4368813) as described in the manufacturer's protocol. The cDNA from this reverse transcription reaction was used to monitor gene expression by real time PCR using ABI Taqman Gene Expression Mix (cat#4369510) and primers/probes designed by ABI (Applied **Biosystems** Taqman Gene Expression Hs00232355_m1. The following PCR cycle was used: 50° C. for 2 min. 95° C. for 10 min. 40 cycles of (95° C. for 15 seconds, 60° C. for 1 min) using StepOne Plus Real Time PCR Machine (Applied Biosystems).

Fold change in gene expression after treatment with antisense oligonucleotides was calculated based on the difference in 18S-normalized dCt values between treated and mocktransfected samples.

Results: Real time PCR results show that the levels of the NKX6-1 mRNA in MCF-7 cells are significantly increased 48 h after treatment with the oligos designed to NKX6-1 antisense torsnaby.aApr07-unspliced (FIG. 5).

Although the invention has been illustrated and described with respect to one or more implementations, equivalent alterations and modifications will occur to others skilled in the art upon the reading and understanding of this specification and the annexed drawings. In addition, while a particular feature of the invention may have been disclosed with respect to only one of several implementations, such feature may be combined with one or more other features of the other implementations as may be desired and advantageous for any given or particular application.

The Abstract of the disclosure will allow the reader to quickly ascertain the nature of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the following claims.

CUR NO	SEQ ID NO:	SEQUENCE
CUR-1373	SEQ ID NO: 1	3 T*C*C*T*C*T*C*T*C*C*C*A*A*C*C*C*A*C*T
CUR-1374	SEQ ID NO: 1	4 T*G*T*C*T*C*G*G*C*T*C*T*C*C*A*C*T*C*C*T
CUR-1375	SEQ ID NO: 1	5 C*A*T*T*C*C*T*T*C*C*A*C*A*A*T*T*C*G*C*C*T
CUR-1376	SEQ ID NO: 1	6 G*T*T*C*C*T*C*C*C*G*T*G*C*C*T*T*T*A*G
CUR-1194	SEQ ID NO: 1	7 A*C*C*T*A*T*A*G*T*A*C*A*C*G*C*C*A*G*C*A
CUR-1195	SEQ ID NO: 1	8 G*C*T*T*C*T*G*C*C*A*G*G*T*G*T*G*A*C*A
CUR-1193	SEQ ID NO: 1	9 C*A*G*C*A*A*G*T*G*T*C*A*G*A*T*C*C*C*A
CUR-1192	SEQ ID NO: 2	0 A*G*T*G*T*C*A*G*A*T*C*C*C*A*G*C*T*C*C*A*G
CUR-1191	SEQ ID NO: 2	1 G*G*A*G*T*T*T*G*G*T*T*G*G*G
CUR-1190	SEQ ID NO: 2	2 G*T*G*T*C*A*G*A*T*C*C*C*A*G*C*T*C*C*A*G
CUR-1188	SEQ ID NO: 2	3 C*T*C*G*T*T*A*C*C*T*C*T*T*G*T*C*C*T*G*G*G
CUR-1189	SEQ ID NO: 2	4 A*G*T*C*G*G*G*A*G*G*G*C*T*T*G*G*G*T*T*A
CUR-1187	SEQ ID NO: 2	5 C*C*C*T*G*C*T*T*C*C*T*T*C*T*G*T*G*T*C*T
CUR-1186	SEQ ID NO: 2	6 G*C*C*A*C*C*C*T*G*C*T*T*C*C*T*T*C*T*G*T
CUR-1182	SEQ ID NO: 2	7 T*C*C*T*G*C*T*T*C*C*T*C*G*G*C*T*C*T*C*A
CUR-1183	SEQ ID NO: 2	8 C*C*T*C*C*A*T*G*T*C*C*T*G*C*C*C*T*C*A*A
CUR-1185	SEQ ID NO: 2	9 T*C*C*G*T*C*T*C*C*T*C*C*A*T*T*A*G*T*C*C*A
CUR-1184	SEQ ID NO: 3	0 T*C*C*G*T*C*T*C*C*T*C*C*A*T*T*A*G*T*C*C
CUR-1181	SEQ ID NO: 3	1 G*T*C*C*G*T*C*T*C*C*T*C*C*A*T*T*A*G*T*C*C
CUR-1207	SEQ ID NO: 3	2 C*T*A*C*C*A*G*C*A*T*C*A*C*C*T*C*A*A*C*C*C
CUR-1209	SEQ ID NO: 3	3 A*G*T*T*C*G*A*G*G*T*G*A*A*G*A*A*G*A*G*C
CUR-1208	SEQ ID NO: 3	4 C*G*C*T*G*G*A*G*G*A*T*C*T*G*T*A*C*T*G*G*A
CUR-1210	SEQ ID NO: 3	5 C*C*T*G*A*T*G*A*A*G*T*T*C*G*A*G*G*T*G*A
CUR-1211	SEQ ID NO: 3	6 G*T*A*C*G*T*C*A*A*C*G*A*C*T*T*C*G*A*C*C*T
CUR-1388	SEQ ID NO: 3	7 G*C*A*A*T*T*G*A*A*G*C*T*G*T*C*T*C*C*C
CUR-1389	SEQ ID NO: 3	8 C*G*G*C*A*G*A*G*A*A*C*A*G*A*A*G*G*T*C
CUR-1390	SEQ ID NO: 3	9 T*T*T*C*A*G*A*G*A*T*G*G*G*C*G*C*T*C
CUR-1391	SEQ ID NO: 4	0 G*G*A*G*A*G*C*A*A*T*C*T*G*A*G*A*A*G*C*G*A
CUR-1392	SEQ ID NO: 4	1 G*C*C*T*C*T*C*A*A*C*G*T*C*A*G*A*G*C*C*T
CUR-1501	SEQ ID NO: 4	2 T*C*T*C*A*G*T*C*T*C*A*A*T*C*T*C*T*C*C*C
CUR-1502	SEQ ID NO: 4	3 G*T*T*A*C*A*C*G*T*C*C*A*C*T*C*C*A*A*G*G
CUR-1503	SEQ ID NO: 4	4 G*C*T*A*T*G*C*C*T*G*C*C*A*C*C*A*T*C*C*T
CUR-1504	SEQ ID NO: 4	5 T*T*t*C*C*T*C*C*C*A*AT*T*C*C*T*A*C*C*T

SEQUENCE LISTING

<160> NUMBER OF SEQ ID NOS: 45

<210> SEQ ID NO 1 <211> LENGTH: 2641 <212> TYPE: DNA <213> ORGANISM: Homo sapiens

58 57

<300> PUBLICATION INFORMATION:
<308> DATABASE ACCESSION NUMBER: NM_002500
<309> DATABASE ENTRY DATE: 2010-12-26
<313> RELEVANT RESIDUES IN SEQ ID NO: (1)..(2641)

<400> SEQUENCE: 1

gagaacgggg	agcgcacagc	ctggacgcgt	gcgcaggcgt	caggegeata	gacctgctag	60
cccctcagct	agcggccccg	cccgcgctta	gcatcactaa	ctgggctata	taacctgagc	120
gcccgcgcgg	ccacgacacg	aggaattcgc	ccacgcagga	ggegeggegt	ccggaggccc	180
cagggttatg	agactatcac	tgctcaggac	ctactaacaa	caaaggaaat	cgaaacatga	240
ccaaatcgta	cagcgagagt	gggctgatgg	gcgagcctca	gccccaaggt	cctccaagct	300
ggacagacga	gtgtctcagt	tctcaggacg	aggagcacga	ggcagacaag	aaggaggacg	360
acctcgaagc	catgaacgca	gaggaggact	cactgaggaa	cgggggagag	gaggaggacg	420
aagatgagga	cctggaagag	gaggaagaag	aggaagagga	ggatgacgat	caaaagccca	480
agagacgcgg	ccccaaaaag	aagaagatga	ctaaggctcg	cctggagcgt	tttaaattga	540
gacgcatgaa	ggctaacgcc	cgggagcgga	accgcatgca	cggactgaac	gcggcgctag	600
acaacctgcg	caaggtggtg	ccttgctatt	ctaagacgca	gaagetgtee	aaaatcgaga	660
ctctgcgctt	ggccaagaac	tacatctggg	ctctgtcgga	gateetgege	tcaggcaaaa	720
gcccagacct	ggtctccttc	gttcagacgc	tttgcaaggg	cttatcccaa	cccaccacca	780
acctggttgc	gggctgcctg	caactcaatc	ctcggacttt	tctgcctgag	cagaaccagg	840
acatgeeece	ccacctgccg	acggccagcg	cttccttccc	tgtacacccc	tactcctacc	900
agtcgcctgg	gctgcccagt	ccgccttacg	gtaccatgga	cageteceat	gtcttccacg	960
ttaagcctcc	gccgcacgcc	tacagcgcag	cgctggagcc	cttctttgaa	agccctctga	1020
ctgattgcac	cagcccttcc	tttgatggac	ccctcagccc	gccgctcagc	atcaatggca	1080
acttctcttt	caaacacgaa	ccgtccgccg	agtttgagaa	aaattatgcc	tttaccatgc	1140
actatcctgc	agcgacactg	gcaggggccc	aaagccacgg	atcaatcttc	tcaggcaccg	1200
ctgcccctcg	ctgcgagatc	cccatagaca	atattatgtc	cttcgatagc	cattcacatc	1260
atgagcgagt	catgagtgcc	cagctcaatg	ccatatttca	tgattagagg	cacgccagtt	1320
tcaccatttc	cgggaaacga	acccactgtg	cttacagtga	ctgtcgtgtt	tacaaaaggc	1380
agccctttgg	gtactactgc	tgcaaagtgc	aaatactcca	agcttcaagt	gatatatgta	1440
tttattgtca	ttactgcctt	tggaagaaac	aggggatcaa	agttcctgtt	caccttatgt	1500
attattttct	atagetette	tatttaaaaa	ataaaaaaat	acagtaaagt	ttaaaaaata	1560
caccacgaat	ttggtgtggc	tgtattcaga	tcgtattaat	tatctgatcg	ggataacaaa	1620
atcacaagca	ataattagga	tctatgcaat	ttttaaacta	gtaatgggcc	aattaaaata	1680
tatataaata	tatattttc	aaccagcatt	ttactacttg	ttacctttcc	catgctgaat	1740
tattttgttg	tgattttgta	cagaattttt	aatgactttt	tataatgtgg	atttcctatt	1800
ttaaaaccat	gcagcttcat	caatttttat	acatatcaga	aaagtagaat	tatatctaat	1860
ttatacaaaa	taatttaact	aatttaaacc	agcagaaaag	tgcttagaaa	gttattgtgt	1920
tgccttagca	cttctttcct	ctccaattgt	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	1980
aaaattgcac	aatttgagca	attcatttca	ctttaaagtc	tttccgtctc	cctaaaataa	2040
aaaccagaat	cataattttc	aagagaagaa	aaaattaaga	gatacattcc	ctatcaaaac	2100
atatcaattc	aacacattac	ttgcacaagc	ttgtatatac	atattataaa	taaatgccaa	2160

-continued

catacocttc tttaaatcaa aagctgottg actateacat acaatttgca ctgttacttt 2220 ttagtctttt actcetttgc attccatgat tttacagaga atctgaaget attgatgttt 2280 ccagaaaata taaatgcatg attttataca tagtcacaaa aatggtggtt tgtcatatat 2340 tcatgtaata aatctgagcc taaatctaat cagttgtta atgttgggat ttatatctat 2400 agtagtcaat tagtacagta gcttaaataa atcaaacca tttaattcat aattagaacca 2460 atagtcattg catgtaaaat gcatcacaga ataagtgctg tttgaagtg gatgetggat 2520 ccactaggaat cgatctgtac tgtaattttg tttgtaatcc tgtaatatta gggtaatgc 2580 acaattaga aaacattcat ccagttgcaa taaaatagta ttgaaagtga aaaaaaaaaa	-continued						
teasgaaata taaatgaatg attitataca tagicacaaa aatggiggit tgicatatta 2400 agiagtaata aatctgagce taaacctaat caggitgita atgitgggat tataatctat 2400 agiagtcaat tagiacagta gcitaaataa atcaaacca titaatcat aattagaaca 2520 ccactggaat cgatctgaa cigaaccaga ataagigci titgaagigi gatgotggita 2520 ccactggaat cgatctgiac tigtaattitig titgiaatce tigtaatattat ggigtaadig 2580 acaattaga aaacattcat ccagitgicaa taaaatagta tigaaagiga aaaaaaaaaa 2640 a 2641	cataccette tttaaateaa aagetgettg actateacat acaatttgea etgttaettt	2220					
catgtaata aatotgagoc taaatotaat caggtigtta atgtigggat titatatotat 2400 agtagtoaat tagtacagta gottaaataa attoaaacca titaattoat aattagaaca 2600 caatggaat ogatgaaat gottaaataa attoaaacca titaattat gatgatgatga 2520 caactggaat ogatotgaa tgaattitg titgaaatoc tgatattat gatgaaatog 2600 caactggaat ogatotgaa tgaattitg titgaaatoc tgatattat gatgaaacaa 2600 aaaaattada aaaaattaca tcagtigcaa taaaatagta tigaaagtga aaaaaaaaaa 2601 aa 2611 LENGTH: 3239 call: LENGTH: 3239 call: LENGTH: 3239 call: DANGTHEN DANGTON: Call: Call: Call: DANGTHEN DANGTON: Call: Call: Call: DANGTHEN DANGTON: Call: Cal	ttagtctttt actcctttgc attccatgat tttacagaga atctgaagct attgatgttt	2280					
agtagtcaat tagtacagta gcttaaataa attcaaacca tttaattcat aattagaaca 2500 ataagtattg catgtaaatt gcagtcaga ataagtgctg tttgagattg gatgctggta 2500 ccactggaat cgactgtac tgtaatttg tttgtaatc tgtatattat ggtgtaatg 2500 ccactggaat cgactgtac tgtaatttg tttgtaatc tgtatattat ggtgtaatg 2500 ccactggaat cgactgtac tgtaatttg tttgtaatc tgtatattat ggtgtaatg 2500 ccactggaat cgactgtac tgtaatttg tttgtaatgt ttgaaagtga aaaaaaaa	ccagaaaata taaatgcatg attttataca tagtcacaaa aatggtggtt tgtcatatat	2340					
ccactggaat cgatetgtac tgtaatttg tttgtaatec tgtatatta ggtgtaatgc 2500 ccactggaat cgatetgtac tgtaatttg tttgtaatec tgtatatta ggtgtaatgc 2500 acaattaga aaacattcat ccagttgcaa taaaatagta ttgaaagtga aaaaaaaaaa	tcatgtaata aatctgagcc taaatctaat caggttgtta atgttgggat ttatatctat	2400					
acaattagaa cgatetgtae tgtaatttg tttgtaatec tgtatattat ggtgtaatgc 2580 acaatttaga aaacattcat ccagttgcaa taaaatagta ttgaaagtga aaaaaaaaaa	agtagtcaat tagtacagta gcttaaataa attcaaacca tttaattcat aattagaaca	2460					
acaatttaga aaacattcat ccagttgcaa taaaatagta ttgaaagtga aaaaaaaaaa	atagctattg catgtaaaat gcagtccaga ataagtgctg tttgagatgt gatgctggta	2520					
210 SEQ ID NO 2 2115 LENGTH: 3239 2125 YTPE: DNA 2123 ORGANISM: Homo sapiens 2300 FUBLICATION INFORMATION: 2308 DATABASE ACCESSION NUMBER: NML000457.3 2309 DATABASE ACCESSION NUMBER: NML000457.3 2313 RELEVANT RESIDUES IN SEQ ID NO: (1)(3239) 2400 SEQUENCE: 2 gggaggaggc agtgggagg cggaggggg gggcettegg ggtgggcgc cagggtaggg	ccactggaat cgatctgtac tgtaattttg tttgtaatcc tgtatattat ggtgtaatgc	2580					
<pre><210 > SEQ ID NO 2 <211 > LENGTH: 3239 <212 > TYPE: DNA <213 > ORGANISM: Homo sapiens <300 > PUBLICATION INFORMATION: <308 > DATABASE ACCESSION UNUBER: NML000457.3 <309 > DATABASE ACCESSION UNUBER: NML000457.3 <309 > DATABASE ACCESSION UNUBER: NML000457.3 <313 > RELEVANT RESIDUES IN SEQ ID NO: (1)(3239) </pre> <pre><400 > SEQUENCE: 2 gggagagagg agtgggagg cagagagaga tgcgactcc caaaaccctc gtcgacatgg</pre>	acaatttaga aaacattcat ccagttgcaa taaaatagta ttgaaagtga aaaaaaaaaa	2640					
2213 YDFE NDA 22133 ORGANISM: Homo sapiens 2300 POBLICATION INFORMATION: 2308 DATABASE ACCESSION NUMBER: NM_000457.3 2313> RELEVANT RESIDUES IN SEQ ID NO: (1)(3239) 2400> SEQUENCE: 2 gggaggagga gatgggaggg ggagggggg gggcettegg ggtgggcgc cagggtaggg 120 2400> SEQUENCE: 2 gggagggggc cagggtggag gcagggaga tgcgactcc caaaaccctc gtcgacatgg 120 2400> SEQUENCE: 2 ggaaggtgtt gacgatggg gcagggaga tgcgactcc caaaaccctc gtcgacatgg 120 2400> SEQUENCE: 2 ggaaggtgtt gacgatggg gcatggagc caggctacac cacctggaa tttgagaatg 180 2400> SEQUENCE: 2 ggaaggtgtt gacgatgggc aatgacacgt cccatcaga aggcaccaac ctcaacgcc 240 240 240 240 240 240 240 240 240 240	a	2641					
gggaggaggc agtgggagg cggagggcgg gggcttcgg ggtgggccc cagggtaggg 60 caggtaggc cggggaggg cggggggggg gggcttcgg ggtggggcc cagggtaggg 120 caggtaggc cagggagaa tgcgactctc caaaaccctc gtcgacatgg 120 acatggccga ctacagtgct gactggacc cagctacac caccctggaa tttgagaatg 180 tgcaggtgtt gacgatggc aatgacacgt cccatcaga aggcaccaac ctcaacgcc 240 ccaacagcct gggtgtcagc gccctgtgtg ccatctggg ggaccgggcc acgggcaaac 300 actacggtgc ctcgagctgt gacggtggt agggctgac agggctgct ccggaggagg gtgcggaaga 360 accacatgta ctcctgcaga tttagccggc agggctggtg ggacaaagac aagaggaacc 420 aggacggcg ctcgaggtt agcactcgaa gggctggtg ggacaaagac aagaggaacc 420 aggacgggc gggccggatc aggacgggc gggcaaagaa ggaagcgtcc 480 agaatgagcg ggaccggatc agcactcgaa ggtcaagcta tgaggacaga agcctgcct 540 ccatcaatgc gccctgcag gcggaagaa ttgccagcat ggacaacga gcctgcctc 540 ccatcaatgc gcgacattcgg gcgaagaaga ttgccagcat gacacctcc cccgtctccg 600 ggatcaacgg gcgacattcgg gcgaagaaga ttgccagcat gacacctcc cccgtctccg 600 tgaaggagaa gctgctggtt ctcgttgagt gggccaagta catcccagct ttctggagc 720 tccccctgga cgacaaggtg gccctgctaa gagccaagta catcccagct ttctggagc 720 tccccctgga cgacaaggtg gccctgctca gagccaagta gactacattg 840 tcccctcgga ctgccggag ctggcggaga tcggggggg tccataacgc atccttgacg 900 agctggtgct gcccttccag gagctgcaga tcgatgaca tgagtagcc tacctcaaag 960 ccatcatct ctttgacca gatccaagg ggctgagga tccatcacg tccatacgc tcctaaagg 960 ccatcatct tcttgacca gatccaagg ggctgagg accaccaa tgagtagcc acctgcaag 1020 tgggttccca ggtgcaggt agcttgagg accaccaa tgaggagaa accaggga 1020 tgggcgctt tggagagct ctgctgctgc tgcccacctt gcaggaaga accaggaga 1140 tgatcgagaa gatccagttc atcaagctc tcggcagga agcaccacca agggagagac cccccaggaagga	<211> LENGTH: 3239 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <300> PUBLICATION INFORMATION: <308> DATABASE ACCESSION NUMBER: NM_000457.3 <309> DATABASE ENTRY DATE: 2010-12-20						
caggtggccg cggcgtggag gcagggagaa tgcgactctc caaaaccctc gtcgacatgg 120 acatggccga ctacagtgct gcactggacc cagcctacac caccctggaa tttgagaatg 180 tgcaggtgtt gacgatgggc aatgacacgt ccccatcaga aggcaccaac ctcaacgcgc 240 ccaacagcct gggtgtcagc gccctgtgtg ccatctggg ggaccgggcc acgggcaaac 300 actacggtgc ctcgagctgt gacggtgga agggcttctt ccggaggagg gtgcggaaga 360 accacatgta ctcctgcaga tttagccggc agggctggt ggacaaagac aagaggaacc 420 agtgccgcta ctgcaggctc aagaactggt tcggggtgg ggacaaagac agaggaacc 420 agaatgagcg ggaccggatc agacctcgaa ggtcaagcta tgaggacagc agcctgccct 540 ccatcaatgc gctcctgcag gcggaggtcc tgtcccgaca gatcacctcc cccgtctccg 600 ggatcaacgg cgacattcgg gcgaagaaga ttgccagcat gacaactcc cccgtctccg 600 ggatcaacgg cgacattcgg gcgaagaaga ttgccagcat cgcagattgt gtgaggtcca 660 tgaaggagca gctgctggtt ctcgttgat gggccaagta catcccagct ttctgcgagc 720 tccccctgga cgaccaggtg gccctgctca gagcccatgc tggggagcac ctgctgctcg 780 gagccaccaa gagatccatg gtgttcaagg acgtgctgct ctaggcaat gactacattg 840 tccctcggca ctgcccggag ctggcggaa tcgatgacaa tgagtatgc tacctacaag 960 agctggtgt gcccttccag gagctgcaga tcgatgacaa tgagtatgc tacctcaaag 960 ccatcatctt ctttgaccca gatgccaagg ggctgagcga tccagggaag atcaagcgg 1020 tgcgttccca ggtgcaggt agcttgagag actacatcaa cgaccgccag tatgactcgc 1080 gtggccgctt tggagagctg ctgctgctc tgcccacctt gcaggaat acctggcaga 1140 tgatcgagca gatccagtt atcaagctct tcggcatgc caagattgac acctggcaga 1140 tgatcgagca gatccagtt atcaagctct tcggcatgc caagattgac acctggcagc 1200 aggagatgct gctgggagg tcccccagcg atgcaccca tgcccacca cccctgcacc 1260 ctcacctgat gcaggaacat atgggaaca acggcacca acgtcacca accccacc ccctgcacc 1260 ctcacctgat gcaggaacat atgggaacaa acgtcacca acgcaccaca acccccac 1260 ctcacctgat gcaggaacat atgggaacaa acgcaccaa acgcaccaca acccccct 1320 acctcacgaa cggacagat tgggaacaa acgcaccaa acgcaccaca acccccct 1320	<400> SEQUENCE: 2						
acatggccga ctacagtgct gcactggacc cagcctacac caccetggaa tttgagaatg 180 tgcaggtgtt gacgatgggc aatgacacgt ccccatcaga aggcaccaac ctcaacgcgc 240 ccaacagcct gggtgtcagc gccctgtgtg ccatctgcgg ggaccgggcc acgggcaacc 300 actacggtgc ctcgagctgt gacggctgca agggcttctt ccggaggagc gtgcggaaga 360 accacatgta ctcctgcaga tttagccggc agggctggt ggacaaagac aagaggaacc 420 aggacgcgcta ctgcaggctc aagaaatgct tccgggctgg catgaagaag gaagccgtcc 480 agaatgaggc ggaccggatc agcactcgaa ggtcaagcta tgaggacag agcctgcct 540 ccatcaatgc gctcctgcag gcggaggtcc tgtcccgaca gatcacctcc cccgtctccg 600 ggatcaacgg cgacattcgg gcgaagaaga ttgccagcat cgcagatgtg tgtgagtcca 660 tgaaggaaga gctgctgtt ctcgttgagt gggccaagta catccagct ttctgcgagc 720 tccccctgga cgacattcgg gcgctgctca gagcccatgc tggcgagcac ctgctgctg 780 gagccaccaa gagatccatg gtgttcaagg acgtcgctc cctaggcaat gactacattg 840 tcccctgga cgaccaggtg gcctgctca gagcccatgc tggcgagaca ctgctgctcg 780 gagccaccaa gagatccatg gtgttcaagg acgtgctgct cctaggcaat gactacattg 840 tccctcgga ctgcccggag ctggcggaga tcggcgggt gtccatacgc atccttgacg 900 agctggtgc gcccttccag gagctgcaga tcgatgcggt gtccatacgc atccttgacg 900 agctggtgct gcccttccag gagctgcaga tcgatgacga tccagggaag atcaagcggc 1020 tgcgttcca ggtgcaggt agcttgaagg actacatca cgacgccag tatgactcgc 1080 ccatcatctt ctttgacca gatgccaagg ggctgagcga tccagggaag actacactcg 1020 tgcgttcca ggtgcaggt agcttgagg actacatcaa cgaccgccag tatgactcgc 1080 gtggccgctt tggagagctg ctgctgctgc tgccacctt gcaggaaga acctggcaga 1140 tgatcgagca gatccagttc atcaagctct tcggcatggc caagattgac acctggtgc 1200 aggagatgct gctggaggg tcccccacgc atgcaccac cccctgcacc 1260 ctcacctgat gcaggaagat atgggaacca acgacgcac ttgcgaaccacaa atggcaaccacaa acctcaccac cccctgaaccaccaa aggagaatgct gctggagagg tcccccacacaaccaa atgccaccc 1320 acctcaccaa cgaagaagat gcgaacaagat gtggaagaccaacaa atgccaccc 1320 acctcacaacaa cggacaagat gtggaagaacaacaaaacaa							
tgcaggtgtt gacgatgggc aatgacacgt ccccatcaga aggcaccaac ctcaacgcgc 240 ccaacagcct gggtgtcagc gccctgtgtg ccatctgcgg ggaccgggcc acgggcaaac 300 actacggtgc ctcgagctgt gacggctgca agggcttctt ccggaggagc gtgcggaaga 360 accacatgta ctcctgcaga tttagccggc agtgcgtggt ggacaaagac aagaggaacc 420 agtgccgcta ctgcaggctc aagaaatgct tccgggctgg catgaagaag gaagccgtcc 480 agaatgagcg ggaccggatc aggaccggatc agcactcgaa ggtcaagcta tgaggacag agcctgcct 540 ccatcaatgc gctcctgcag gcgaagaaga ttgccagcaa gatcacctc cccgtctccg 600 ggatcaacgg cgacattcgg gcgaagaaga ttgccagcat cgcagatgtg tgtgagtcca 660 tgaaggaaga gctgctgtt ctcgttgagt gggccaagta catcccagct ttctgcgagc 720 tccccctgga cgaccaggtg gccctgctca gagcccatgc tggcgaagac ctgctgctg 780 gagccaccaa gagatccatg gtgttcaagg acgtgctgct cctaggcaac ctgctgctcg 780 agcccaccaa gagatccatg gtgttcaagg acgtgctgct cctaggcaac ctgctgctcg 900 agctggtgct gcccttccag gagctgcaga tcgatgacga tccatcacag 900 agctggtgt gcccttccag gagctgcaga tcgatgacga tccatacgc atccttgacg 900 ccatcatctt ctttgaccca gatgccaagg ggctgagga tccaaggagaa accacggaaga 1020 tgcgttccca ggtgcaggt agcttggagg actacatcaa cgaccgccag tatgactcgc 1020 tgcgttccca ggtgcaggt ctgctgctgc tgccaccat gcaggaaga accactgccgaag 1140 tgatcgagca gatccagttc atcacagcg tcgccaccat gccaggaaga accactgttgc 1200 aggagatgc gctgggagg tccccacagc atgcaccac acctggcaga 1200 aggagatgcc gctgggagg tccccacagcg atgcaccac accctgcacc 1200 aggagatgct gcctggaggg tccccaccac tgccaccac cccctgcacc 1200 ccaccactg gcagaagatg gctggaggg tccccaccac tgccaccac cccctgcacc 1200 aggagatgct gcaggaagat tggggaacac acggcaccac accctgcacc 1200 ccaccactg gcagaagatg tgggaagaca acggcaccaca accccaccac cccctgcacc 1220 acccccaccac cccctgaacaccaccaccaccaccaccaccaccaccaccaccacc							
ccaacagcct gggtgtcagc gccctgtgtg ccatctgcgg ggaccgggcc acgggcaaac 300 actacggtgc ctcgagctgt gacggctgca agggcttctt ccggaggagc gtgcggaaga 360 accacatgta ctcctgcaga tttagccggc agtgcgtggt ggacaaagac aagaggaacc 420 agtgccgcta ctgcaggctc aagaaatgct tccgggctgg catgaagaag gaagccgtcc 480 agaatgagcg ggaccggatc agcactcgaa ggtcaagcta tgaggacagc agcctgccct 540 ccatcaatgc gctcctgcag gcggaggtcc tgtcccgaca gatcacctcc cccgtctccg 600 ggatcaacgg cgacattcgg gcgaagaaga ttgccagcat cgcagatgt gtgagtcca 660 tgaaggaagac gctgctggtt ctcgttgagt gggccaagta catcccagct ttctgcgagc 720 tccccctgga cgaccaggt gccctgctca gagcccatgc tggcgagcac ctgctgctcg 780 gagccaccaa gagatccatg gtgttcaagg acgtgctgct ctcaggcaat gactacattg 840 tccctcggac ctgcccggag ctggcggaga tgagccggt gtccatacgc atccttgacg 900 agctggtgct gcccttccag gagctgcaga tcgatgacaa tgagtatgcc tacctcaaag 960 ccatcatctt ctttgaccca gagctgcaga tcgatgacaa tgagtatgcc tacctcaaag 960 ccatcatctt ctttgaccca gatgccaagg ggctgagcga tccagggaag atcaagcgc 1020 tgggtcccc ggtgcaggt agcttggagg actacatcaa cgaccgccag tatgactcgc 1090 gtggccgctt tggagagct ctgctgctgc tgccacctt gcaggaaga atcaagcgc 1020 tggggcgcg gatccagga gatccaggt agcttggagg actacatcaa cgaccgccag tatgactcgc 1090 gtggccgctt tggagagct ctccaggga actacatcaa cgaccgccag tatgactcgc 1020 aggagagca gatccagtc atcaagctct tcggcaagca gatccagca cccctgcacc 1260 ctcacctgat gcaggaagg tcccccagcg atgcaccca tgcccaccac cccctgcacc 1260 ctcacctgat gcaggaacat atgggaacaa acgtcatcgt tgccaccaca cccctgcacc 1260 ctcacctgat gcaggaacat atgggaacaa acgtcatcgt tgccaccaca acggacacaca atggcaacaca acggacacaca acggacacacac	acatggccga ctacagtgct gcactggacc cagcctacac caccctggaa tttgagaatg						
actacggtgc ctcgagctgt gacggctgca agggcttctt ccggaggagc gtgcggaaga 360 accacatgta ctcctgcaga tttagccggc agtgcgtggt ggacaaagac aagaggaacc 420 agtgccgcta ctgcaggctc aagaaatgct tccgggctgg catgaagaag gaagccgtcc 480 agaatgagcg ggaccggatc agcactcgaa ggtcaagcta tgaggacagc agcctgccct 540 ccatcaatge gctcctgcag gcggaggtcc tgtcccgaca gatcacctcc cccgtctccg 600 ggatcaacgg cgacattcgg gcgaagaaga ttgccagcat cgcagatgtg tgtgagtcca 660 tgaaggagca gctgctggtt ctcgttgagt gggccaagta catcccagct ttctgcgagc 720 tccccctgga cgaccatggt gccctgctca gagcccatgc tggcgagcac ctgctgctcg 780 gagccaccaa gagatccatg gtgttcaagg acgtgctgct cctaggcaat gactacattg 840 tccctcggca ctgcccggag ctggcggaga tcgatgggt gtccatacgc atccttgacg 900 agctggtgct gcccttccag gagctgcaga tcgatgacaa tgagtatgcc tacctcaaag 960 ccatcatctt ctttgaccca gatgccaagg ggctgagcga tccagggaag atcaagggc 1020 tgcgttccca ggtgcaggt agcttggag actacatca cgaccgcag tatgactcgc 1080 gtggccgctt tggagagctg ctgctgctg tgcccacctt gcagagcatc acctggcaga 1140 tgatcgagca gatccagttc atcaccagcg atgcaccca tgcccaccac cccctgcacc 1260 ctcacctgat gcaggaacat atgggaacca acgtcatcgt tgccaaccac acccttgcacc 1220 aggagatgct gcaggaacat atgggaacca acgtcatcgt tgccaaccac atgcccacc 1220 acctcaccac gcaggaacat atgggaacca acgtcatcgt tgccaaccac atgcccacc 1220 acctcaccac gcaggaacat atgggaacca acgtcatcgt tgccaaccac atgcccaccac 1220 acctcaccacac cgagaacat tggagaacca acgtcatcgt tgccaaccac atgcccaccac 1220 acctcaccac gcagaacat tggagaacca acgtcatcgt tgccaaccac atgcccaccac 1220 acctcaccacac acgacagatg tgtgagtggc cccgacccag gggacaggca gccacccct 1320	tgcaggtgtt gacgatgggc aatgacacgt ccccatcaga aggcaccaac ctcaacgcgc	240					
accacatgta ctectgeaga tttageegge agtgegtggt ggacaaagac aagaggaace 420 agtgeegeta etgeaggete aagaaatget teegggetgg catgaagaag gaageegtee 480 agaatgageg ggaceggate ageactegaa ggtcaageta tgaggacage ageetgeeet 540 ceatcaatge geteetgeag geggaggtee tgteeegaca gateacetee eeegteteeg 600 ggatcaacgg egacatteeg gegaagaaga ttgeeageat egeagatgtg tgtgagteea 660 tgaaggagea getgetggtt etegttgagt gggecaagta eateceaget ttetgegage 720 teeceetgga egaceaggtg geeetgetea gageceatge tggegageae etgetgeteg 780 gagecaccaa gagateeatg gtgttcaagg aegtgetget eetaggeaat gactacattg 840 teeceteggea etgeeeggag etggeggaga tegageeggt gteeataege ateettgaeg 900 agetggtget geeetteeag gagetgeaga tegatgaeaa tgagtatgee taceteaaag 960 ecatcatett etttgaceea gatgeeagag ggetgagega teeagggaag ateaagegge 1020 tgegtteeea ggtgeaggtg agettggagg actacatet geagageate acetggeaga 1140 tgategagea gateeagte ateaagetet teggeatgge eaagattgae aacetgttge 1200 aggagatget geetggaggg teeeceageg atgeaceea tgeecaceae eeeetgeace 1260 eteacetgat geaggaacat atgggaacea acgteategt tgeeaacaa atgeecacte 1320 aceteacetgat geaggaacat tgtgagtgge eeegaceeag gggacaggea geeaceett 1320 aceteageaa eggacagatg tgtgagtgge eeegaceeag gggacaggea geeaceett 1320 aceteageaa eggacagatg tgtgagtgge eeegaceeag gggacaggea geeaceett 1320	ccaacageet gggtgtcage geeetgtgtg ccatetgegg ggacegggee aegggeaaac						
agtgccgcta ctgcaggctc aagaaatgct tccgggctgg catgaagaag gaagccgtcc 480 agaatgagcg ggaccggatc agcactcgaa ggtcaagcta tgaggacagc agcctgccct 540 ccatcaatgc gctcctgcag gcggaggtcc tgtcccgaca gatcacctcc cccgtctccg 600 ggatcaacgg cgacattcgg gcgaagaaga ttgccagcat cgcagatgtg tgtgagtcca 660 tgaaggagca gctgctggtt ctcgttgagt gggccaagta catcccagct ttctgcgagc 720 tccccctgga cgaccaggtg gccctgctca gagcccatgc tggcgagcac ctgctgctcg 780 gagccaccaa gagatccatg gtgttcaagg acgtgctgct cctaggcaat gactacattg 840 tccctcggca ctgcccggag ctggcggaga tgagccgggt gtccatacgc atccttgacg 900 agctggtgct gcccttccag gagctgcaga tcgatgacaa tgagtatgcc tacctcaaag 960 ccatcatctt ctttgaccca gatgccaagg ggctgagcga tccagggaag atcaagcggc 1020 tgcgttccca ggtgcaggtg agcttggagg actacatca cgaccgccag tatgactcgc 1080 gtggccgctt tggagagctg ctgctgctgc tgcccacctt gcaggaata acctggcaga 1140 tgatcgagca gatccagttc atcaagctct tcggcatggc caagattgac aacctgttgc 1200 aggagatgct gctgggaggg tcccccacgg atgcaccca tgccaccac cccctgcacc 1260 ctcacctgat gcaggaacat atgggaacca acgtcatcgt tgccaaccac atgcccacc 1260 ctcacctgat gcaggaacat atgggaacca acgtcatcgt tgccaaccac atgcccacc 1380 acctcagcaa cggacagatg tgtgagtggc cccgaccca gggacaggaa gccacccct 1380	actacggtgc ctcgagctgt gacggctgca agggcttctt ccggaggagc gtgcggaaga						
agaatgagcg ggaccggatc agcactcgaa ggtcaagcta tgaggacagc agcctgccct 540 ccatcaatgc gctcctgcag gcggaggtcc tgtcccgaca gatcacctcc cccgtctccg 600 ggatcaacgg cgacattcgg gcgaagaaga ttgccagcat cgcagatgtg tgtgagtcca 660 tgaaggagca gctgctggtt ctcgttgagt gggccaagta catcccagct ttctgcgagc 720 tccccctgga cgaccaggtg gccctgctca gagcccatgc tggcgagcac ctgctgctcg 780 gagccaccaa gagatccatg gtgttcaagg acgtgctgct cctaggcaat gactacattg 840 tccctcggca ctgcccggag ctggcggaga tcgatgcggt gtccatacgc atccttgacg 900 agctggtgct gcccttccag gagctgcaga tcgatgacaa tgagtatgcc tacctcaaag 960 ccatcatctt ctttgaccca gatgccaagg ggctgagcga tccagggaag atcaagcgc 1020 tgcgttccca ggtgcaggtg agcttggag actacatcaa cgaccgccag tatgactcgc 1080 gtggccgctt tggagagctg ctgctgctgc tgcccacctt gcagagcatc acctggcaga 1140 tgatcgagca gatccagttc atcaagctct tcggcatggc caagattgac aacctgttgc 1200 aggagatgct gctggaggg tccccagcg atgcaccca tgcccaccac cccctgcacc 1260 ctcacctgat gcaggaaca atgggaacaa atgggaacca acgtcacct tgccaacaca atgcccactc 1320 acctcagcaa cggacagatg tgtgagtggc cccgacccag gggacaggca gccaccctt 1380							
ccatcaatgc gctcctgcag gcggaggtcc tgtcccgaca gatcacctcc cccgtctccg 600 ggatcaacgg cgacattcgg gcgaagaaga ttgccagcat cgcagatgtg tgtgagtcca 660 tgaaggagca gctgctggtt ctcgttgagt gggccaagta catcccagct ttctgcgagc 720 tccccctgga cgaccaggtg gccctgctca gagcccatgc tggcgagcac ctgctgctcg 780 gagccaccaa gagatccatg gtgttcaagg acgtgctgct cctaggcaat gactacattg 840 tccctcggca ctgcccggag ctggcggaga tgagccgggt gtccatacgc atccttgacg 900 agctggtgct gcccttccag gagctgcaga tcgatgacaa tgagtatgcc tacctcaaag 960 ccatcatctt ctttgacca gatgccaagg ggctgagcga tccagggaag atcaagcggc 1020 tgcgttccca ggtgcaggtg agcttggagg actacatca cgaccgccag tatgactcgc 1080 gtggccgctt tggagagctg ctgctgctgc tgccacctt gcaggagcat acctggcaga 1140 tgatcgagca gatccagttc atcaagctct tcggcatggc caagattgac aacctgttgc 1200 aggagatgct gcgggaggg tccccagcg atgacccca tgcccaccac cccctgcacc 1260 ctcacctgat gcaggaacat atgggaacca acgtcatcgt tgcaacaca atggccacct 1320 acctcagcaa cggacagatg tgtgagtggc cccgacccag gggacaggca gccacccct 1320 acctcagcaa cggacagatg tgtgagtggc cccgacccag gggacaggca gccacccct 1380							
ggatcaacgg cgacattcgg gcgaagaaga ttgccagcat cgcagatgtg tgtgagtcca 660 tgaaggagca gctgctggtt ctcgttgagt gggccaagta catcccagct ttctgcgagc 720 tccccctgga cgaccaggtg gccctgctca gagcccatgc tggcgagcac ctgctgctcg 780 gagccaccaa gagatccatg gtgttcaagg acgtgctgct cctaggcaat gactacattg 840 tccctcggca ctgcccggag ctggcggaga tgagccgggt gtccatacgc atccttgacg 900 agctggtgct gcccttccag gagctgcaga tcgatgacaa tgagtatgcc tacctcaaag 960 ccatcatctt ctttgaccca gatgccaagg ggctgagcga tccagggaag atcaagcggc 1020 tgcgttccca ggtgcaggtg agcttggagg actacatcaa cgaccgccag tatgactcgc 1080 gtggccgctt tggagagctg ctgctgctgc tgcccacctt gcagagcatc acctggcaga 1140 tgatcgagca gatccagttc atcaagctct tcggcatggc caagattgac aacctgttgc 1200 aggagatgct gctgggaggg tcccccagcg atgacccca tgcccacca cccctgcacc 1260 ctcacctgat gcaggaacat atgggaacca acgtcatcgt tgccaacaca atgcccactc 1320 acctcagcaa cggacagatg tgtgagtggc cccgaccag gggacaggca gccaccctg 1380							
tgaaggagca getgetgett etegttgagt gggecaagta eateceaget ttetgegage 720 teeceetgga egaceaggtg geeetgetea gageceatge tggegageae etgetgeteg 780 gagecaceaa gagatecatg gtgtteaagg aegtgetget eetaggeaat gactacattg 840 teecteggea etgeeeggag etggeggaga tgageegggt gteeatacge ateettgaeg 900 agetggtget geeetteeag gagetgeaga tegatgacaa tgagtatgee taceteaaag 960 ceateatett etttgaceca gatgeeaagg ggetgagega teeagggaag ateaagegge 1020 tgegtteeea ggtgeaggtg agettggagg aetacateaa egacegeeag tatgactege 1080 gtggeegett tggagagetg etgetgetge tgeeeacett geaggagate aeetggeaga 1140 tgategagea gateeagtte ateaagetet teggeatgge eaagattgae aaeetgttge 1200 aggagatget getgggaggg teeeceageg atgeaceea tgeeeaceae eeeetgeaee 1260 eteaeetgat geaggaacat atgggaacea aegteategt tgeeaacaca atgeeeacte 1320 aceteageaa eggacagatg tgtgagtgge eeegaceeag gggacaggea geeaeeett 1380							
teccectgga egaceaggtg geectgetea gageceatge tggegageae etgetgeteg 780 gagecaccaa gagatecatg gtgtteaagg aegtgetget cetaggeaat gactacattg 840 teccteggea etgeceggag etggeggaga tggageeggt gtecataege ateettgaeg 900 agetggtget geectteeag gagetgeaga tegatgaeaa tgagtatgee taceteaaag 960 ceateatett etttgaccca gatgeeaagg ggetgagega teeagggaag ateaagegge 1020 tgegtteea ggtgeaggtg agettggagg actacateaa egacegeeag tatgaetege 1080 gtggeegett tggagagetg etgetgetge tgeecacett geagageate acetggeaga 1140 tgategagea gateeagtte ateaagetet teggeatgge eaagattgae aacetgttge 1200 aggagatget getgggaggg teeceeageg atgeaceea tgeecaceae eeeetgeaee 1260 eteacetgat geaggaacat atgggaacea aegteategt tgeeaacaca atgeecacte 1320 aceteageaa eggacagatg tgtgagtgge eeegaceeag gggacaggea geeaceeetg 1380							
gagccaccaa gagatccatg gtgttcaagg acgtgctgct cctaggcaat gactacattg 840 tccctcggca ctgcccggag ctggcggaga tgagccgggt gtccatacgc atccttgacg 900 agctggtgct gcccttccag gagctgcaga tcgatgacaa tgagtatgcc tacctcaaag 960 ccatcatctt ctttgaccca gatgccaagg ggctgagcga tccagggaag atcaagcggc 1020 tgcgttccca ggtgcaggtg agcttggagg actacatcaa cgaccgccag tatgactcgc 1080 gtggccgctt tggagagctg ctgctgctgc tgccacctt gcagagcatc acctggcaga 1140 tgatcgagca gatccagttc atcaagctct tcggcatggc caagattgac aacctgttgc 1200 aggagatgct gctgggaggg tcccccagcg atgcaccca tgcccaccac cccctgcacc 1260 ctcacctgat gcaggaacat atgggaacca acgtcatcgt tgccaacaca atgcccactc 1320 acctcagcaa cggacagatg tgtgagtggc cccgacccag gggacaggca gccacccctg 1380	tgaaggagca getgetggtt etegttgagt gggeeaagta eateeeaget ttetgegage	720					
teceteggea etgeceggag etggeggaga tegagegggt gtecatacge atcettgacg 900 agetggtget gecettecag gagetgeaga tegatgacaa tgagtatgee taceteaaag 960 ceateatett etttgaceca gatgecaagg ggetgagega tecagggaag ateaagegge 1020 tgegttecca ggtgeaggtg agettggagg actacateaa egacegecag tatgactege 1080 gtggeegett tggagagetg etgetgetge tgeceacett geagageate acetggeaga 1140 tgategagea gatecagtte ateaagetet teggeatgge caagattgae aacetgttge 1200 aggagatget getgggaggg teceecageg atgeacecea tgeceaceae eeeetgeace 1260 etcacetgat geaggaacat atgggaacea acgteategt tgecaacaca atgeceacte 1320 aceteageaa eggacagatg tgtgagtgge eeegacecag gggacaggea geeacecetg 1380	tececetgga egaceaggtg gecetgetea gageeeatge tggegageae etgetgeteg						
agctggtgct gcccttccag gagctgcaga tcgatgacaa tgagtatgcc tacctcaaaag 960 ccatcatctt ctttgaccca gatgccaagg ggctgagcga tccagggaag atcaagcggc 1020 tgcgttccca ggtgcaggtg agcttggagg actacatcaa cgaccgccag tatgactcgc 1080 gtggccgctt tggagagctg ctgctgctgc tgcccacctt gcagagcatc acctggcaga 1140 tgatcgagca gatccagttc atcaagctct tcggcatggc caagattgac aacctgttgc 1200 aggagatgct gctgggaggg tcccccagcg atgcaccca tgcccaccac cccctgcacc 1260 ctcacctgat gcaggaacat atgggaacca acgtcatcgt tgccaacaca atgcccactc 1320 acctcagcaa cggacagatg tgtgagtggc cccgacccag gggacaggca gccacccct 1380	gagecaceaa gagatecatg gtgtteaagg aegtgetget cetaggeaat gaetacattg	840					
ccatcatctt ctttgaccca gatgccaagg ggctgagcga tccagggaag atcaagcggc 1020 tgcgttccca ggtgcaggtg agcttggagg actacatcaa cgaccgccag tatgactcgc 1080 gtggccgctt tggagagctg ctgctgctgc tgcccacctt gcagagcatc acctggcaga 1140 tgatcgagca gatccagttc atcaagctct tcggcatggc caagattgac aacctgttgc 1200 aggagatgct gctgggaggg tcccccagcg atgcacccca tgcccaccac cccctgcacc 1260 ctcacctgat gcaggaacat atgggaacca acgtcatcgt tgccaacaca atgcccactc 1320 acctcagcaa cggacagatg tgtgagtggc cccgacccag gggacaggca gccacccctg 1380	teceteggea etgeceggag etggeggaga tgageegggt gtecataege ateettgaeg	900					
tgcgttccca ggtgcaggtg agcttggagg actacatcaa cgaccgccag tatgactcgc 1080 gtggccgctt tggagagctg ctgctgctgc tgcccacctt gcagagcatc acctggcaga 1140 tgatcgagca gatccagttc atcaagctct tcggcatggc caagattgac aacctgttgc 1200 aggagatgct gctgggaggg tcccccagcg atgcaccca tgcccaccac cccctgcacc 1260 ctcacctgat gcaggaacat atgggaacca acgtcatcgt tgccaacaca atgcccactc 1320 acctcagcaa cggacagatg tgtgagtggc cccgacccag gggacaggca gccacccctg 1380	agetggtget gecettecag gagetgeaga tegatgaeaa tgagtatgee taceteaaag	960					
gtggccgctt tggagagctg ctgctgctgc tgcccacctt gcagagcatc acctggcaga 1140 tgatcgagca gatccagttc atcaagctct tcggcatggc caagattgac aacctgttgc 1200 aggagatgct gctgggaggg tcccccagcg atgcaccca tgcccaccac cccctgcacc 1260 ctcacctgat gcaggaacat atgggaacca acgtcatcgt tgccaacaca atgcccactc 1320 acctcagcaa cggacagatg tgtgagtggc cccgacccag gggacaggca gccacccctg 1380	ccatcatctt ctttgaccca gatgccaagg ggctgagcga tccagggaag atcaagcggc	1020					
tgatcgagca gatccagttc atcaagctct tcggcatggc caagattgac aacctgttgc 1200 aggagatgct gctgggaggg tcccccagcg atgcacccca tgcccaccac cccctgcacc 1260 ctcacctgat gcaggaacat atgggaacca acgtcatcgt tgccaacaca atgcccactc 1320 acctcagcaa cggacagatg tgtgagtggc cccgacccag gggacaggca gccacccctg 1380	tgcgttccca ggtgcaggtg agcttggagg actacatcaa cgaccgccag tatgactcgc	1080					
aggagatget getgggaggg teccecageg atgeaceca tgeceaceae eccetgeace 1260 eteacetgat geaggaacat atgggaacea aegteategt tgecaacaca atgeeeacte 1320 aceteageaa eggacagatg tgtgagtgge eccgacecag gggacaggea gecacecetg 1380	gtggccgctt tggagagctg ctgctgctgc tgcccacctt gcagagcatc acctggcaga	1140					
ctcacctgat gcaggaacat atgggaacca acgtcatcgt tgccaacaca atgcccactc 1320 acctcagcaa cggacagatg tgtgagtggc cccgacccag gggacaggca gccacccctg 1380	tgatcgagca gatccagttc atcaagctct tcggcatggc caagattgac aacctgttgc	1200					
acctcagcaa cggacagatg tgtgagtggc cccgacccag gggacaggca gccacccctg 1380	aggagatget getgggaggg tecceeageg atgeacecea tgeceaceae eccetgeace	1260					
	ctcacctgat gcaggaacat atgggaacca acgtcatcgt tgccaacaca atgcccactc	1320					
agaccccaca gccctcaccg ccaggtggct cagggtctga gccctataag ctcctgccgg 1440	acctcagcaa cggacagatg tgtgagtggc cccgacccag gggacaggca gccacccctg	1380					
	agaccccaca geeeteaceg ceaggtgget cagggtetga geeetataag eteetgeegg	1440					

gagecgtege cacaategte aageceetet etgecateee eeageegaee ateaceaage 1500

aggaagttat	ctagcaagcc	gctggggctt	gggggctcca	ctggctcccc	ccagccccct	1560		
aagagagcac	ctggtgatca	cgtggtcacg	gcaaaggaag	acgtgatgcc	aggaccagtc	1620		
ccagagcagg	aatgggaagg	atgaagggcc	cgagaacatg	gcctaagggc	cacatcccac	1680		
tgccaccctt	gacgccctgc	tctggataac	aagactttga	cttggggaga	cctctactgc	1740		
cttggacaac	ttttctcatg	ttgaagccac	tgccttcacc	ttcaccttca	tccatgtcca	1800		
acccccgact	tcatcccaaa	ggacagccgc	ctggagatga	cttgaggcct	tacttaaacc	1860		
cageteeett	cttccctagc	ctggtgcttc	tectetecta	gcccctgtca	tggtgtccag	1920		
acagageeet	gtgaggctgg	gtccaattgt	ggcacttggg	gcaccttgct	cctccttctg	1980		
ctgctgcccc	cacctctgct	geeteeetet	gctgtcacct	tgctcagcca	tecegtette	2040		
tccaacacca	cctctccaga	ggccaaggag	gccttggaaa	cgattccccc	agtcattctg	2100		
ggaacatgtt	gtaagcactg	actgggacca	ggcaccaggc	agggtctaga	aggctgtggt	2160		
gagggaagac	gcctttctcc	tccaacccaa	cctcatcctc	cttcttcagg	gacttgggtg	2220		
ggtacttggg	tgaggatccc	tgaaggcctt	caacccgaga	aaacaaaccc	aggttggcga	2280		
ctgcaacagg	aacttggagt	ggagaggaaa	agcatcagaa	agaggcagac	catccaccag	2340		
gcctttgaga	aagggtagaa	ttctggctgg	tagagcaggt	gagatgggac	attccaaaga	2400		
acagcctgag	ccaaggccta	gtggtagtaa	gaatctagca	agaattgagg	aagaatggtg	2460		
tgggagaggg	atgatgaaga	gagagagggc	ctgctggaga	gcatagggtc	tggaacacca	2520		
ggctgaggtc	ctgatcagct	tcaaggagta	tgcagggagc	tgggcttcca	gaaaatgaac	2580		
acagcagttc	tgcagaggac	gggaggctgg	aagctgggag	gtcaggtggg	gtggatgata	2640		
taatgcgggt	gagagtaatg	aggcttgggg	ctggagagga	caagatgggt	aaaccctcac	2700		
atcagagtga	catccaggag	gaataagctc	ccagggcctg	tctcaagctc	ttccttactc	2760		
ccaggcactg	tcttaaggca	tctgacatgc	atcatctcat	ttaatcctcc	cttcctccct	2820		
attaacctag	agattgtttt	tgttttttat	tetectecte	cctccccgcc	ctcacccgcc	2880		
ccactccctc	ctaacctaga	gattgttaca	gaagctgaaa	ttgcgttcta	agaggtgaag	2940		
tgatttttt	tctgaaactc	acacaactag	gaagtggctg	agtcaggact	tgaacccagg	3000		
tctccctgga	tcagaacagg	agctcttaac	tacagtggct	gaatagcttc	tccaaaggct	3060		
ccctgtgttc	tcaccgtgat	caagttgagg	ggcttccggc	tcccttctac	agcctcagaa	3120		
accagactcg	ttettetggg	aaccctgccc	actcccagga	ccaagattgg	cctgaggctg	3180		
cactaaaatt	cacttagggt	cgagcatcct	gtttgctgat	aaatattaag	gagaattca	3239		
<pre><210> SEQ ID NO 3 <211> LENGTH: 1062 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <300> PUBLICATION INFORMATION: <308> DATABASE ACCESSION NUMBER: NM_201589 <309> DATABASE ENTRY DATE: 2010-12-27 <313> RELEVANT RESIDUES IN SEQ ID NO: (1)(1062)</pre> <400> SEQUENCE: 3								
atggccgcgg	agctggcgat	gggcgccgag	ctgcccagca	gcccgctggc	catcgagtac	60		
gtcaacgact	tcgacctgat	gaagttcgag	gtgaagaagg	agcctcccga	ggccgagcgc	120		
ttctgccacc	gcctgccgcc	aggctcgctg	tcctcgacgc	cgctcagcac	gccctgctcc	180		

teegtgeect cetegeecag ettetgegeg eecageeegg geaceggegg eggeggege

-continued

-continued		
geggggggeg geggeggete gteteaggee gggggegeee eegggeegee gageggggge	300	
cccggcgccg tcgggggcac ctcggggaag ccggcgctgg aggatctgta ctggatgagc	360	ı
ggctaccagc atcacctcaa ccccgaggeg ctcaacctga cgcccgagga cgcggtggag	420	ı
gegeteateg geageggeea ceaeggegeg eaceaeggeg egeaceaece ggeggeegee	480	ı
gcagcctacg aggctttccg cggcccgggc ttcgcgggcg gcggcggagc ggacgacatg	540	1
ggcgccggcc accaccacgg cgcgcaccac gccgcccacc atcaccacgc cgcccaccac	600	ı
caccaccacc accaccacca ccatggcggc gcgggacacg gcggtggcgc gggccaccac	660	1
gtgcgcctgg aggagcgctt ctccgacgac cagctggtgt ccatgtcggt gcgcgagctg	720	ı
aaccggcagc tccgcggctt cagcaaggag gaggtcatcc ggctcaagca gaagcggcgc	780	ı
acgeteaaga accgeggeta egegeagtee tgeegettea agegggtgea geageggeae	840	ı
attctggaga gcgagaagtg ccaactccag agccaggtgg agcagctgaa gctggaggtg	900	ı
gggcgcctgg ccaaagagcg ggacctgtac aaggagaaat acgagaagct ggcgggccgg	960	ı
ggeggeeeeg ggagegggg eggggeeggt tteeegeggg ageettegee geegeaggee	1020	ı
ggtcccggcg gggccaaggg cacggccgac ttcttcctgt ag	1062	
<211> LENGTH: 2573 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <300> PUBLICATION INFORMATION: <308> DATABASE ACCESSION NUMBER: NM_000209 <309> DATABASE ENTRY DATE: 2010-12-26 <313> RELEVANT RESIDUES IN SEQ ID NO: (1)(2573) <400> SEQUENCE: 4		
gggtggcgcc gggagtggga acgccacaca gtgccaaatc cccggctcca gctcccgact	60)
cccggctccc ggctcccggc tcccggtgcc caatcccggg ccgcagccat gaacggcgag	120	
gagcagtact acgcggccac gcagctttac aaggacccat gcgcgttcca gcgaggcccg	180	ı
gegeeggagt teagegeeag ecceettgeg tgeetgtaca tgggeegeea geeeeegeeg	240	ı
cogcogcogc accogttocc tggcgccctg ggcgcgctgg agcagggcag ccccccggac	300	ı
atotoccogt acgaggtgcc ccccctcgcc gacgaccccg cggtggcgca ccttcaccac	360	1
caccteegg eteagetege geteeeceae eegeeegeeg ggeeetteee ggagggagee	420	ı
gagccgggcg tcctggagga gcccaaccgc gtccagctgc ctttcccatg gatgaagtct	480	
accaaagete acgegtggaa aggeeagtgg geaggeggeg cetaegetge ggageeggag	540	I
gagaacaagc ggacgcgcac ggcctacacg cgcgcacagc tgctagagct ggagaaggag	600	ı
ttcctattca acaagtacat ctcacggccg cgccgggtgg agctggctgt catgttgaac	660	ı
ttgaccgaga gacacatcaa gatctggttc caaaaccgcc gcatgaagtg gaaaaaggag	720	ı
gaggacaaga agcgcggcgg cgggacagct gtcgggggttg gcggggtcgc ggagcctgag	780	ı
caggactgcg ccgtgacctc cggcgaggag cttctggcgc tgccgccgcc gccgccccc	840	ı
ggaggtgctg tgccgccgc tgcccccgtt gccgcccgag agggccgcct gccgcctggc	900	ı
cttagcgcgt cgccacagcc ctccagcgtc gcgcctcggc ggccgcagga accacgatga	960	ı
gaggcaggag ctgctcctgg ctgaggggct tcaaccactc gccgaggagg agcagagggc	1020	ı
ctaggaggac cccgggcgtg gaccacccgc cctggcagtt gaatggggcg gcaattgcgg	1080	ı
ggcccacctt agaccgaagg ggaaaacccg ctctctcagg cgcatgtgcc agttggggcc	1140	1

ccgcgggtag atgccggcag gccttccgga agaaaaagag ccattggttt ttgtagtatt 1200

ggggccctct	tttagtgata	ctggattggc	gttgtttgtg	gctgttgcgc	acatccctgc	1260		
cctcctacag	cactccacct	tgggacctgt	ttagagaagc	cggctcttca	aagacaatgg	1320		
aaactgtacc	atacacattg	gaaggctccc	taacacacac	agcggggaag	ctgggccgag	1380		
taccttaatc	tgccataaag	ccattcttac	tegggegace	cctttaagtt	tagaaataat	1440		
tgaaaggaaa	tgtttgagtt	ttcaaagatc	ccgtgaaatt	gatgccagtg	gaatacagtg	1500		
agteeteete	tteeteetee	tectettece	cctccccttc	ctcctcctcc	tettettte	1560		
cctcctcttc	ctcttcctcc	tgctctcctt	tecteceet	cctctttcc	ctcctcttcc	1620		
tcttcctcct	gctctccttt	cctccccctc	ctctttctcc	tcctcctcct	cttcttcccc	1680		
ctcctctccc	tectectett	cttccccctc	ctctccctcc	tcctcttctt	ctccctcctc	1740		
ttcctcttcc	tcctcttcca	cgtgctctcc	tttcctcccc	ctcctcttgc	tccccttctt	1800		
ccccgtcctc	ttcctcctcc	tcctcttctt	ctccctcctc	ttcctcctcc	tctttcttcc	1860		
tgacctcttt	ctttctcctc	ctcctccttc	tacctcccct	tctcatccct	cctcttcctc	1920		
ttctctagct	gcacacttca	ctactgcaca	tcttataact	tgcacccctt	tcttctgagg	1980		
aagagaacat	cttgcaaggc	agggcgagca	gcggcagggc	tggcttagga	gcagtgcaag	2040		
agtccctgtg	ctccagttcc	acactgctgg	cagggaaggc	aaggggggac	gggcctggat	2100		
ctgggggtga	gggagaaaga	tggacccctg	ggtgaccact	aaaccaaaga	tattcggaac	2160		
tttctattta	ggatgtggac	gtaattcctg	ttccgaggta	gaggetgtge	tgaagacaag	2220		
cacagtggcc	tggtgcgcct	tggaaaccaa	caactattca	cgagccagta	tgaccttcac	2280		
atctttagaa	attatgaaaa	cgtatgtgat	tggagggttt	ggaaaaccag	ttatcttatt	2340		
taacatttta	aaaattacct	aacagttatt	tacaaacagg	tctgtgcatc	ccaggtctgt	2400		
cttcttttca	aggtetggge	cttgtgctcg	ggttatgttt	gtgggaaatg	cttaataaat	2460		
actgataata	tgggaagaga	tgaaaactga	ttctcctcac	tttgtttcaa	acctttctgg	2520		
cagtgggatg	attcgaattc	acttttaaaa	ttaaattagc	gtgttttgtt	ttg	2573		
<pre><210> SEQ ID NO 5 <211> LENGTH: 1116 <212> TYPE: DNA 213> ORGANISM: Homo sapiens <300> PUBLICATION INFORMATION: <308> DATABASE ACCESSION NUMBER: NM_006168 <309> DATABASE ENTRY DATE: 2010-12-26 <313> RELEVANT RESIDUES IN SEQ ID NO: (1)(1116)</pre> <400> SEQUENCE: 5								
	tagcggtggg	qqcaatqqaq	qqcacccqqc	aqaqcqcatt	cctqctcaqc	60		
	tggccgccct					120		
	cgctgcctgc					180		
tegecetece	cgcctctggg	cacccacaac	ccaqqcqqcc	tgaagccccc	ggccacgggg	240		
	ccctcggcag					300		
	tgagccggcc					360		
	gttcctcctc					420		
	ctgctgccgc					480		
						540		
ggaetgeeae	gctttagcag	ceryageeeg	cegeegeege	cgcccggget	cracticage	340		

cccagcgccg cggccgtggc cgccgtgggc cggtacccca agccgctggc tgagctgcct

600

							_
ggccggacgc	ccatcttctg	gcccggagtg	atgcagagcc	cgccctggag	ggacgcacgc	660	_
ctggcctgta	cccctcatca	aggatccatt	ttgttggaca	aagacgggaa	gagaaaacac	720	
acgagaccca	ctttttccgg	acagcagatc	ttcgccctgg	agaagacttt	cgaacaaaca	780	
aaatacttgg	cggggcccga	gagggctcgt	ttggcctatt	cgttggggat	gacagagagt	840	
caggtcaagg	tctggttcca	gaaccgccgg	accaagtgga	ggaagaagca	cgctgccgag	900	
atggccacgg	ccaagaagaa	gcaggactcg	gagacagagc	gcctcaaggg	ggcctcggag	960	
aacgaggaag	aggacgacga	ctacaataag	cctctggatc	ccaactcgga	cgacgagaaa	1020	
atcacgcagc	tgttgaagaa	gcacaagtcc	agcagcggcg	geggeggegg	cctcctactg	1080	
cacgcgtccg	agccggagag	ctcatcctga	acgccg			1116	
<210> SEQ <211> LENG <212> TYPE <213> ORGA	TH: 635	sapiens					
<400> SEQU	ENCE: 6						
ggtctcacgg	tagctgtcct	tgggcttccc	atcccgcagc	gctccgatgt	gaccctcctc	60	
tgcgcggaaa	atttcgaccc	ggggcgccgg	catcgcgacg	ctcagccagt	gcccgcgagg	120	
ctcccaggag	atgcggggta	gtaaggccct	aaaaagagga	gcctggacac	ggcctggatt	180	
gagaaagaag	caagcaaaca	aaaatcctcg	gtagctgtgt	gtagcttcag	gagtggagag	240	
ccgagacaca	ccgacggcgc	cggagcgtcg	caagaacaat	ggttgctgca	gtgggttggg	300	
agagaggacc	cggacaagtt	cctaaaggca	cgggaggaac	gcgggcaaac	caggtttagg	360	
geeecaggeg	aattgtggaa	ggaatgactt	cctcaaccta	tcagcaccgt	ggacaattcc	420	
cactccaacg	gccctgacct	teggeetaet	agattcagca	aaaatctctc	ttcctccctt	480	
gcttcctcct	ttccttcctc	ccttcctcct	ttccttcctg	ccttccctcc	ctccccttcc	540	
tectecttte	cttcctttcc	teceteceet	tcttcctcct	ttctttccct	tcctcctttc	600	
cactcttccc	tgtttgcttt	gtttcaaaaa	caaaa			635	
<210> SEQ <211> LENG <212> TYPE <213> ORGA	TH: 17964	sapiens					
<400> SEQU	ENCE: 7						
ctaactatct	cacaatatag	gtccccaacc	actgaccaaa	ctccagtcca	ggcagccacc	60	
agctggcctg	gtcttgctgc	ttcctttagc	ggcttccaag	gtccagggac	agggggtctg	120	
ggccaccaag	aggetetget	aggetgteee	tgcagccaca	gccaccccac	tggacccctg	180	
cctcccatct	gagaggacag	ccctcttcct	ggagctggga	tctgacactt	gctgatacca	240	
acggcagata	ccaggtaggt	cccctccctt	tctcttcctt	gagctcctaa	aatgccactc	300	
ataccaccct	ctgcactcgg	caaaggccac	tgtggcttaa	tcaaatcagg	cacccacaaa	360	
gcttcaagac	tggaaaagat	gccttggcta	acccacccat	ttagtggacg	gaaacactga	420	
ggccgtcagg	ggagtggcag	ctggccacag	actgaaccat	agacttgggg	cccagacctg	480	
gggcccctca	cggagcctca	gagggtgaaa	gggacttgct	caagtccacg	cagcggtggt	540	
gggtgagctt	tgtcttaaca	acgagcactt	tctacttcat	cacagaccat	gagtggcatt	600	
gtgtttgttc	acccgatgat	gggtggccac	tggcttgttc	acccgatgat	gggtggccac	660	
tggcttgtca	caggagtatt	tccgagagga	agatgaggga	gcttggggct	gaaggccagt	720	

gggtttggaa	ggaagcaaca	ttcatgtggt	taactgataa	ctgggcccca	teeetgggee	780
tccttcctcc	ctccctgtcc	ttagcctgat	taagaccaac	ttacccagct	gctaatcatt	840
gctgagcctg	ttgattttgc	cttaaaaaat	taactgggca	tgagtttgcg	gttttcctca	900
cccctaaccc	tgaaaaggcc	tgggtgggca	ggaggcctcc	agggttatgc	aagaggccgc	960
tggcctccca	acgcatagcc	cacggccacc	teggetgete	tccaaagaag	aggetttget	1020
caagagtcaa	cagtetgett	gttccccctg	tgetgggtee	tgagcaaatt	tgctctgtta	1080
ccaaagagag	ataaaggcag	ctgggggaga	gctttccaaa	cagggatggg	aagcggcagc	1140
tttgagcttg	gggttctaga	actctgcagt	gtcagagcca	ggagaatctt	taggaggatg	1200
tgggctgggg	tttttcaagc	tgggttccga	ggctcccagg	agccaagggt	atgcatccac	1260
aggcccagct	tcaaccagcg	actccctttt	acatgtagtc	ttaatatttt	atttgagggt	1320
tggaaaacca	ctgattcagc	cccatcccct	cattgcacag	atggggagat	ggagatcaga	1380
gggggaagtg	acttgtccaa	ggacagaagg	tcacctcggg	tattcagggg	ctccagccag	1440
catgggaatg	aatggtgggc	tctctgtgga	cccgggcaat	gtcttgaaag	acattggtga	1500
acaagacggc	tctgcaaacg	ccttgccatg	ccgttctccc	cctcctccca	gggctggctg	1560
gaagcagaga	ggtgcctgag	agccattgga	agacccaagt	caggggaatg	cacctggctc	1620
tgtgtcccat	gggccctgtg	aggatatgac	cagcagccag	gcactgcaaa	ccggagacta	1680
cgttataatc	catctcagcc	acgtcctgtc	tctggaggca	tcagcacttt	gggaggctga	1740
gatgggagga	ttacttgagc	ccaagagttt	gagaccagcc	tgggcaacat	agtgagaccc	1800
tgtgtctatt	ttttaaaaag	attttttaaa	attaaagaca	gatgcccagt	ccctatcaca	1860
aaaaaagatg	tagagccctg	ccctgactct	ctccacctct	ctgagcctca	gtttcttcac	1920
ctgtaaattg	ggaattataa	tacttaactt	ccagggttgt	catgaaaatg	aaatgaagca	1980
aaatatacac	attgatcatc	atggccactg	gatatgcagc	tgttttagga	gctttgcatg	2040
tgttacttcc	ttgatcctcc	cagccactct	gggaggtagg	caatgttttc	accaattttt	2100
tacacaccag	aggcacaggg	aggttgagcc	atatacccat	gctcacacag	ctgatgagaa	2160
acaagaagtg	gaattggaac	ttgggcagtc	tgtctctaga	gtctgtgcct	ctaactccag	2220
ggctaccctt	cccttccagg	gatgccagtg	agagatggcc	aggagaaggg	cagagagcag	2280
ggcactgtgg	gagatgctga	ctgtaaggct	ccggaggtag	ggcagagagt	atggtctgga	2340
gaatgatcag	gaaggaagcc	aggaggactt	ggatctgtgt	gggtggagct	tctccgcagg	2400
ctgcctcctg	ccaggtggct	tatgacatct	gggctgaggg	tgttgctgtc	ctcctgttta	2460
tgttcatccc	tcctgtttat	gttcctgaat	ttatctgcag	gggtgacctt	gggaattaga	2520
tgcggccttc	ceggeeettg	tggggcctga	aggctgatgg	gageceetge	ctgacccaga	2580
ctctggtttg	gggagtgagg	gctgagccca	catcccagaa	gccacccttg	gtctccccat	2640
actcttgttc	tgaggggccc	cagggatttg	ccaggtcact	aaggtgaagt	gtttggaagt	2700
cctgaggctc	agatcagagt	tactgccctg	tacagttgtg	caggttgctc	actgcacaaa	2760
ggttctccag	ccaagagggc	aggtagggat	ggaaacccag	cccttgttcc	acttgccaag	2820
cgaagtgccc	atggagctct	gcctgcccag	agtggggtgc	ctttttctta	tttgccctag	2880
			ccagctctgg			2940
			gtttcccatt			3000
			aatcatctga			3060
agougagact	Jacoboogaa	Jacquaacay	aaccacccya	adocticada	acacacagat	2000

gttggccgaa	catggtggct	tacacctata	atcctagcac	tttgggaggc	tgagatggga	3120
ggtttacttg	aacccaggag	tttgagacca	gcctgggcaa	catagtgaga	ccctatgtct	3180
attttttaaa	aagattttt	aaaattaaag	acagatgccc	agtccctatc	acagatcaat	3240
gatcgaatct	tggggtaggg	gtggggaggt	gccaggcgtc	tatatttttg	tgcagccaat	3300
attgagaccc	actgtagggg	ggcttcaaat	ttgaacctgg	aaagccttcg	atggcatcaa	3360
gttctatcac	ttactacaac	ttactagtca	aaacctcagc	gaggctcagt	tttcccatct	3420
gtaaagaggg	aatgatgatc	gtttcctcac	aaaatcaaaa	tgccaattaa	atgagataat	3480
gttcagacag	tgcttggcac	catgttcccc	aagtagggag	ctcctgattc	ttgctaccaa	3540
gactattatt	gttgttatgg	gcaatttgac	gttgacaaaa	taaagggcct	ttctaggtca	3600
aggattcggt	gacttgaaga	caggcctcct	ctgttgcttt	gagtcaattt	ctagtacctg	3660
ggcctaaatc	ttgactgcac	accggtcata	ttattgaggt	atgtgttatt	attattattt	3720
aatattttac	ttaatttgtg	aacatcttta	catttagttt	tgaattggtg	ctacattcgc	3780
atggttcaga	atcaaaacat	aaaaggtgta	aattgagaag	tettgettee	agctgtctcc	3840
tgttcacctg	ttctccttga	cttcctcact	atggggaacc	acatccctta	cagatgtatc	3900
tgccaaggtt	tctttataca	gaccagatag	catgtaagat	catacatgag	tagcctctgc	3960
tcttacactg	ttctgtatct	tgtttggttc	atttaatatc	acaacctgga	gatgcttcca	4020
tagcagctga	gagcaagctt	tgaggatgga	agggttctcg	tctcccatca	caggtgagga	4080
aactgaggct	cagagaagaa	acatcatttt	cccagtgagc	caaggcaatg	gtgttagaac	4140
tatctctacc	tggctccaga	gcttgtgttt	atgcccctgc	accgatacgg	ccttccatga	4200
agcccggccc	agaaagcttt	ggagtctggt	tacatctctg	ccatgcaggc	ctggccttcc	4260
caggacaaga	ggtgaggagg	ggggetgteg	gggtcctcac	tgtgtctgga	ctcagaaatc	4320
ccaaagagag	gatgaagtgt	agaacaaaga	atgtcccaag	tcatccagat	agggacccag	4380
tgggaaggtg	tcccctggat	ggaatagtgg	gggcctggtg	gctgtgcccg	tcagcactgg	4440
agaacctgcc	aggaactctc	tgccagcctc	aggtggtgcg	ggtggcaggg	gaagtcagga	4500
ggaggatgag	aggcagggag	ggaagcatgg	ccgatgagac	aagctctggg	tgaggggatg	4560
gagggaccc	catgcctgga	gctcaggaag	gaggatttgg	agttcaaggc	agaagtggca	4620
atgagatttt	aaccgattgt	tttctgctca	gggaacttca	gggttccctc	tggattcttg	4680
acctgcttca	gtttgctgac	tcactggctt	tgggcaagtc	attttccctc	tccgtgcctc	4740
agtttcccca	actgcaaaat	gagagagata	agagatctgg	tctttaggca	gccttggact	4800
acccctaata	ctctacgggg	ctcctctcac	cttgttgagg	tcgtctggat	tctccttctc	4860
tgattggaac	gtcattcacc	catcagggcc	atggacgttc	ctgggttagg	ggatgagggt	4920
acaaatcctc	cacactgctc	ccagtctgga	atcctccccc	ttggttctgt	gtctctctcc	4980
taccatccca	tccttccttc	caggcagatg	tggagtcagg	accatacctg	gtgggtcctg	5040
ggggaagccc	tggccccagt	ccgacatcct	cctcctgctg	ctatggggtc	ccgcacagtg	5100
cacaacctct	tcatccttga	gggagctcct	gctggcccct	ctcagcaccc	cagaccctgc	5160
gagggeeget	gggcagagtt	aatcccttaa	tactggtcac	aatgagattt	cagggatggt	5220
gggaggcggt	ctccatggaa	actgcagacc	tgtccaggat	ccatgcaagg	aattagcccc	5280
agggetetge	aaggggctcc	tagagagcca	accccaatag	gaatgggaga	cacagtggtc	5340
tggactcctg	ggtcctgctc	tggccctcct	gttgtctctc	tggagggctt	ggaaaaaacc	5400
ataactcttg	cattgcttca	gtattctgct	caactggaca	gagccatatt	cacagggaga	5460

gecetateae	ctttctgagc	gtgtttctcc	atccccctat	tggcattgta	atccttaacc	5520
cagtggcttt	tctagaagag	tgcaggcttc	agagtetgee	agacctgagc	ttgaagctca	5580
gcttttccct	ccacgactgt	aaacttagcc	gaggcatttc	acttctctga	gcctcagctt	5640
cctcatctgt	atgatgggca	caataatagc	aacatggcat	ccctcttgtg	ctggctggtg	5700
ggtagtaaca	tccagtgaat	gtgagtctcc	ttctcacctt	ttcctgactg	ccacgcccac	5760
actgcacatt	tgecetecee	ageceeetge	agettecaga	accccgtggt	ctcaagcaga	5820
gagetgtege	acttccttct	ttgccttctc	atcctccaag	tcccatctta	gtcatcttcc	5880
tccgggaaac	agaacgccgg	ggtcctcctc	tgtcccccca	tagcccccaa	agctttacat	5940
catcatcgtt	tagtcagatg	gtaattagac	tggttgtgtg	cctcctccac	tggactgtgt	6000
cccatctacc	attgtattcc	caggacccac	ttgatataaa	taggctggat	gaataactga	6060
gtgaataaag	gatggaaatc	gtccatcgaa	acagtcaaca	tttattcagc	accttctgcg	6120
tgcatcgttg	tgggtggtgg	agatgcagca	gggaagacca	tgggcaaaat	atccccctca	6180
gaggggtgca	gatgagcaaa	taaaaataca	ggatgcccag	tcaaatgtga	atttaagata	6240
cacaagaaat	acttcgttag	tatgagcgtg	tcccaaataa	tgcatgggac	ctgcttatac	6300
ttttaaactg	tggtgttcat	ctgacactca	tatgaaactg	ggtgtcctgt	gttgtgtcgg	6360
gcaaccctac	accctccctc	acagagettg	cgttttggtg	gagaggcggg	ttgcagacat	6420
aagcaagtaa	atacatgaaa	aacgaagtca	attacaaaca	gtggttaagt	gcagtgaaga	6480
cgcacagcgc	gatgtgatag	cacctgggga	tgggcaggac	gatcccctga	gctagtggcc	6540
tttgcctgca	caggtcattt	tagctccaat	gagatgccac	tttgcaaaag	ttctttgagg	6600
atcttaaagg	gcacggtgga	ggctgctaaa	cttgagagaa	ggactctgag	gagggcaagg	6660
ggcgcacctg	agggagtggg	gctgctaagt	ctcacttgat	agactccaca	gttttgcaac	6720
ttggatctgg	gccttcacaa	accttcgcga	acccgcagcc	ccacccctcg	ggtcagccaa	6780
tgtcttctgt	ggggctggga	gccaggggaa	gaggccaaag	gaactgtgca	gagaagcgtg	6840
gccacccggg	ccgcagctgg	gagccctgac	accctttgcc	gccccacctc	atecegeggt	6900
tgccccaggg	cgcagggcag	ggcaggcacc	gegetgggee	ggagggegte	ccggaggagg	6960
cggccaagac	teteegeagt	gctgcgcttt	gegetteetg	ggeteeteet	cgtggccaac	7020
gcaggaactg	gtgttcagaa	acttagatag	ccttagggac	ttcaccaatc	acagcaatcc	7080
cgccaatcac	aggcccagac	gcactatgtc	tctccaaatc	cagaggaggc	ctgctcggtt	7140
cgatcaccaa	tcacagctcg	ttggatttag	ttacctaaaa	gaacatctcc	ccatcacaca	7200
ccagcacatg	gccacggcag	caatcagaac	gtaagatttt	aaaaccagtt	cccagggtag	7260
cageegetge	ccttccacca	cctactaaac	ttctgttccc	agcaccttgt	tccaatgtac	7320
gggggtgggg	ggggtctttg	aggaaggttc	caggetttgt	gctgcttcca	tgtggaagca	7380
gatgttagca	tgtatggggc	atgtataatg	atattactat	cagtaaatgt	catacccatt	7440
atgaaaatta	agataggcag	ggcgtgatgg	tgcatgcctg	taactccagc	tttaggtggc	7500
caaggtggga	ggategetgg	atcccaggag	ttggaggctg	cagtgagcca	cgatggcgcc	7560
	agcctgggtg					7620
_	taggagtgtg		_			7680
	ttgtgaagta					7740
						7800
yarayıcata	tctacatgtc	acatateate	acceaccitic	cccaattat	ccaagccaac	7000

atcttgcaag	tcacaatctt	tgtgttgtgt	ttctcatgcc	ttccagttca	tcagaaaatc	7860
cagttcttgc	caccctccaa	acagaatcta	gattttccat	ctttccatct	ccaccccagc	7920
caaccttatg	catcatctct	ggaggtctgc	aaaagtcttt	tcacttcttc	ccttttttt	7980
tttttaaacc	tgccagggtt	ggggaggga	teteceeege	tccaccgccc	ccccgcctc	8040
cccccccc	cgcctgcctc	caccccaccc	cttcactttt	tctcctgtgg	cttccctacc	8100
ccctactctt	cactcagggg	ccaagggtga	tcttgtacaa	atgtacattg	gctcagatcc	8160
tcttctactt	aaattttat	gacttcctat	gcatttataa	caaaactcat	acaactccca	8220
cttaacactg	tgaggccatg	cacgcccttg	tttttatatc	cctccgtgtc	caacctcatt	8280
tcattccact	tgcccccacc	cctatcagca	gcaggcatac	tagccatttt	aaagtttttc	8340
tttcctgtct	tgggggcctt	tgcatatact	ttcccctctg	cctggaatac	ttctttttt	8400
tttttttt	tttttttaa	gatgaagttt	cgctcttgtc	actcaggctg	gagagcaatg	8460
gcacgatete	ggettgetge	aacctccgcc	teccaggtte	aagcaattct	cctgcctcag	8520
cctcctgagt	agctgggatc	cacacccagc	taatttttta	atttttagta	gagacggggt	8580
ttcgccatgt	tggccaggct	gatctcaaac	teetgaeete	aggtgatcca	cccacctcgg	8640
cctcccagag	tgctgggatt	acaggcatga	gccaccacac	ctggcctgga	atacatttta	8700
gtaagtgttt	aatggatagt	tgttggatga	atgactgaaa	aggtetttea	agaggaactg	8760
atagtgatgt	aaacttcaag	tgeteggtge	gtaacaggta	ttcaatgaaa	aggattctat	8820
gcatatagta	gaaattttgg	aaaataaaat	aaaaattgaa	gatttaaaaa	tegtatgtge	8880
tccaacattt	agaaaggttc	aaactcttaa	tggctaacca	gggtttcttg	acctaagcac	8940
taatgacatt	tgggctagag	aattctttgt	cgtggggact	gtcctgtaca	ttgtccctgg	9000
cagcatgtct	ggcctctagc	cactagatgt	cagcagcact	tttccctacc	ctcaaggtgt	9060
gataatcaaa	actatctcca	gacatttata	aatgtccctt	gggggttgaa	attatctcca	9120
ctgagaacca	ctgtgctggg	cttctaccct	tacaagaaat	tttctctcag	tcattcaatg	9180
cttctcaaat	cttggtgtcc	ataagaatca	tetggggeea	ttattaaaaa	ttcagatggc	9240
agctgggcga	ggtggcttac	acctgtaatc	ccagcacttc	gggaggctga	ggcaggtgga	9300
ccacttgagt	tcaggagttc	gagaccagcc	tgccaaacat	ggtgagacct	cgtctctact	9360
aaaaatacaa	aattagccga	gcgtggtagc	acatgcctgt	aatcccagct	acttgggagg	9420
ctgagacagg	aaaatcactt	aaacccatga	ggcagaggtt	gtggtgagcc	gggatcgtgc	9480
cattgcactc	cagcctggtt	aacaagagca	aaactctgtc	tcaaaaaaaa	aaaaaaaaa	9540
aaaaaaatca	gatggtggct	gggcacggtg	gctcacgcct	gtaatcccag	cactttggga	9600
ggtgggtgga	tcacctgagt	tcaggagttc	aagaccagcc	tggccaacat	ggtgaaaccc	9660
tgtctctatt	aaaaaaaaa	ttagccaggc	gtgatggtgc	atgcctgtaa	teccagetae	9720
tcgggaggct	gaagcaggag	aatcgcttga	acctgggagg	tggaggttcc	agtgagtgaa	9780
gatcgtgcca	ctgcactcca	geetgggege	cagagcgaga	ccctgcctta	aaaaaacaa	9840
caaaaaaaat	cagatgcctg	gggtcctacc	tccaggtgcc	aggaccaaca	gtgggcctag	9900
tcatcagatt	aaaaaaaga	aaatatttaa	taaatagagg	tggggcatgg	tggctcatgc	9960
ctgtaatccc	aacactttgg	gaggccaagg	caggtggatc	actggagact	aagaattcaa	10020
gaccagcctg	gccaacatgg	tgaaaccttg	tctctactaa	aagtacaaaa	actagctggg	10080
tgtggtggtg	catgcctgta	atttcagcta	cttgggaggc	tggggcagga	gaattgcttg	10140
aacctgggag	gcggaggttg	cagtgagaag	agatcaggcc	actacactcc	agcctgggcg	10200
0						

acagagtgag	agtccataaa	ttaataaaca	aacaaattaa	ttaattaaaa	aatagagacg	10260
gggggaggtg	tettgetatg	ttgtccaggc	ttgtcttgaa	ccccagcctc	aagcaaatca	10320
gcctcccaaa	gtgctgggat	taaaggcagg	agccatggag	cacctggccc	aagtgtttaa	10380
tgagcttctg	ggcacttctg	ataccaggtg	ccctcagacc	gcactttgaa	aactcctcaa	10440
ggaggcctct	caatcacctg	atcaccaaac	cctgtgtgag	gctccctacc	cacctggacc	10500
ctctccttga	attcctctcc	tttccaatta	ttacccttcc	ctagatagca	agtggtgaca	10560
gaaccaaacc	ctagctcagc	caaagcccaa	attgcctcat	ctcccttcag	ggaataggca	10620
aaaaaaaaa	aaaaaaaaa	aaaaaaagat	cacagagttc	agctgaaacc	acttaggaaa	10680
tatcagcatc	cccacctccc	cacccaaaag	gactcctgag	tggcagcctg	agaggtgtgt	10740
ctgctcatca	gaataatgtt	gtcagactgt	gttctttctg	ggggatcatc	acactccctt	10800
ttctgggaac	aaatgttggc	cacttggtgg	gatgggccat	catgatctac	gtcagacaaa	10860
ttcagtgagt	catgactcag	cctatctctc	tagacccatc	ttttatgccc	ccttacttat	10920
agtctctctg	agggctgttc	tcaactattc	tatttctctc	ctttccggca	catgatgggg	10980
attacatttt	cttgcttcct	ttgaaatgag	atgtgaccat	gttacttgtt	tcaggtaacg	11040
agatgtgagc	agaaacaacc	tgtgtcacac	ctgggcagaa	gctttaaagg	ccagtgctgc	11100
ccttgttggg	gaagcaagta	tagatatgaa	tcgttccaca	acgcggagcg	cccctgccg	11160
acccatgctg	ggcgtgtact	ataggtgagc	aattaacttt	gctgttcaaa	ccattgagac	11220
ttaggggttt	ttttgtggtt	gcaagctaac	ttcacttcac	ttgactgaac	acagtctttc	11280
caaagtttca	ctaattttt	aatgaccatt	atgattttt	catatctgta	acatttttct	11340
tacatcaact	cacttctttt	tacttcaatt	tattttagaa	agaaatatta	ttactaccaa	11400
atgaaacagt	atcataagta	gaaagcaatg	agaaaataaa	cagaatgaaa	gaaatcctga	11460
tatcaaatcc	tgacttaata	ctatttgcct	ttcaaagcct	ctggaccttt	ggtctttatt	11520
taaaaaaaaa	aaaaaaaaa	aaaaaaagga	gccaggggcc	aggcgtgatg	gctcacacct	11580
gtaatcccag	gaatttggga	ggccgaggtg	ggaagatcac	ctgaggtcag	gagttcgaga	11640
ccagcctgac	caatatgagg	aaaccccatc	tctactaaaa	atacaaaaat	tagccgggtg	11700
tggtggcatg	tgcctgtaat	cccagctact	caggaggctg	agacaggaga	attgcttgaa	11760
cctgggaggc	ggaggttgca	gtgagccgag	atcgctccat	tgcactccag	cctgggcaac	11820
aagagtgaaa	ctccgtctta	aaaaaaaat	gggagccagg	tgcggtggct	catgcctgta	11880
atcccagcag	tttggggggc	tgaggtgggc	agatcacttg	aggtcaggag	ttcaagacca	11940
ccctagccaa	catggtgata	tcctgtctct	acttaaaatg	caaaaattag	ctgggcatga	12000
tggcatgtgc	ctgtaatatc	ccagcctctt	gggaggctga	ggcaggagaa	tcacttgaac	12060
ccaggaggcg	gaggttgcag	tgagctgaga	ttgtaccact	gcactccagc	ctgggggaga	12120
gagttgagac	tccgtattta	aaaaaaaaa	aaaaaaagag	gtccccaaga	gtacttctca	12180
atcttttgga	tccccaaagc	tgtctaagat	tgtcagaata	tttgaaggca	gcacagtatt	12240
gaggctgagt	gtaccaattc	tggaacttga	catcctgggc	ttaaattctg	gttcagtcat	12300
ggactagctg	tgtgaccctg	gacaagttac	tgaactgctc	tgtgactgtt	ttcttatttg	12360
caaaatagtg	accataatga	tgtgtatggc	attaggtcgt	ggtggggatt	atttgtgtta	12420
	agggcttaga					12480
	tggcaggatc					12540
	- 55 55 - 50		5		5	

	ac		-	4			
- 1	\sim	งท	т	7	nı	1€	۷,

tgagacaggg	tctctgtcac	tcaggctgga	gtgcagtggc	gccatcacag	ctcactgcag	12600
cctccaagtc	tccaggctca	gatgatcctc	ctacctcagc	ctccagagta	gctgggacta	12660
catgtgtgga	ccaccacccc	tggctaattt	ttctatattt	tgtagatatg	ggatttcacc	12720
atgttgccca	ggetggtetg	gaactcttgg	gttcaagcaa	tetgeeeett	cttagtcttc	12780
aaagtgttgg	gattacagac	gtgagtcacc	ccacccagcc	tggagaaatg	tttgaactcc	12840
atggagataa	gtaaaaaatc	ctctgcattg	gttaaaaata	aatcacctgg	atgatttatt	12900
tatttagtgt	agatgggaaa	agctacctta	gcagaaagtg	acatagcaaa	attctagagg	12960
ttttacttgg	tggcagctgc	ccaaacctct	aacccagtcg	tatgtatcat	tagagagaat	13020
gtagttccca	ggtcagagga	gctaagaggt	ccttggcatt	ctactcctaa	ggagcatata	13080
tggacaattg	tgtttagttt	tcattttaat	atgaatactt	aaaattttcc	taggatggca	13140
gaggatgaga	aagctatgcc	ccttaggccg	agtgcagcgg	catggctcat	gcctgtaatc	13200
ctggcgcttt	gggaggccaa	ggcgggcgga	tcacgaggtc	aagagatcga	gatcatgttg	13260
gccaacatgg	tgaaactcca	tctctactaa	aaatacaaaa	attagccttg	cgtagtggta	13320
cgcacctgta	gtcccagcta	cttgggaggc	tgaggcagga	gaattgcttg	aacctgggag	13380
gcggagggtg	cagtgagccg	agatetegee	accgcactct	agcccggcag	cagagcgaga	13440
gttcgtctca	aaaaaaaaa	agaaagaaag	aaagaaagaa	agctatgccc	cttgaagaat	13500
aatcaaagat	ccaaaagagt	tttgggctgg	gtattggaga	agaggagaga	aaggtggtgt	13560
agcagagtgg	tcagggccat	tgcctttgaa	atatcagtgg	tgccatttac	atagctgttg	13620
gaccttgcta	aaatcataag	ctcttcaagc	cttatttgct	tcatctataa	aataggaatc	13680
aatgatagga	ccttttcata	gattgctttg	tggagtaaat	gtgttaaacc	ttataaacct	13740
ggcaggtagc	tgcccagcat	atagttgcgt	tatttactca	attcaaagta	ctttcctgcc	13800
gggtgcggtg	gctcaggcct	gtaatcccag	cactttggga	ggctgaggtg	ggtggatcac	13860
ttgaggtcag	gagttccaga	ccagcctgac	caacatggtg	aaaccctgtc	tctactaaaa	13920
acacaaaaat	tagccgggcg	tggtggcagt	cacctgtaat	cccagctact	tgggaggctg	13980
aggcacaaga	atcacttgaa	cctgggaggc	agaggttgca	atgagctgag	atcgtgccgc	14040
tgcacgccat	cctgggtgat	agattgagac	tcagtctcaa	aaaaaaggca	acaaagtact	14100
ttcctttgga	aaagagtgcc	cactggctgg	gtgaagtggc	tcacgcctgt	aatctcagca	14160
cttgtggggc	tgaggcaggc	agatcagttg	aagccaggag	tttgagacca	gtttcacgtg	14220
gccaacatgg	tgaaaccccg	tctactaaaa	atacaaaaat	aagccagatg	tggtgtcatg	14280
tgcctgtagt	cccagctact	caggagagtg	agacaggaga	atcatttgaa	ccctggagtt	14340
ggaggttgca	gtgagcagag	atcgtgccac	tgcactccag	cctgggtgac	agagtaaaac	14400
tctgtctcaa	aaaaaaaaa	aaaaaaagct	ctcactgatt	cctacagctt	cagagaatga	14460
acgaggacca	aaatgtggat	gctacaggga	ggaaacttga	ggctcaaaat	ggagatettt	14520
ctataaaata	caattgttct	accacaggaa	aagctgcttt	attaagtagt	gagtattccg	14580
tcattggaag	tattaagccc	aagctaaatg	gtcaactgtc	agggaaggat	ggtgagagga	14640
ttccagtggg	ttagaggtca	aagagcgtct	accaggtgca	aaagtcttaa	ttaacaaagt	14700
actatcaaaa	ccaaattcat	gtttgggaaa	ctgtatatcc	acatgcaaaa	gaatgaaatc	14760
agactctttc	cttacaccat	atacgaaaat	taactaaaaa	tgagtttgac	ggaaaagtat	14820
aaaacctttg	gaataaaaca	taagggaaaa	gcttcatgat	attagatttg	gtgatgattt	14880
cttggatatg	acaccaaaag	cacaggaaat	ttttaaaaat	tagataaatt	ggactacatc	14940

aaaattagaa	aaatttgtgc	accaaaggac	acttgactga	gtgaaaaagc	aacttacaga	15000
atgggagaaa	atatttgcca	atcatatatc	tgataagggg	ttaatgtccg	aaatatataa	15060
agaactctta	caactcaata	acaacaacca	aaaactttaa	aaatggacaa	agaggccagg	15120
tgtagtggct	caagtctgta	atctcaccac	tttgtgaggc	agaggcagga	ggattgcttg	15180
agctcaggag	tttaagacca	gcctgggcaa	catagtgaaa	ctttgtctct	acagaaaaat	15240
ttaaaaatta	gccaggcatg	ctgcacacct	gtagtcccag	cttacttggg	aggccgaggt	15300
gggaggacca	cttgagtcaa	ggagtttgag	gctgtggtga	gccacgatcc	tgctgctgca	15360
ctctagcctg	ggtgacagag	caagacctgt	ctcaagaaaa	caaaaaaatt	ggcaaaggac	15420
ttgaataggc	atttctccaa	ggaagatata	caaataacca	ttaagcacat	aaaaagatac	15480
ttaacatcac	taatcattag	ggaagtgcaa	atcaaaactg	caataagagg	ctgggcacag	15540
tggctcatgc	ctgtaatccc	agcactttgg	gaggccaggg	caagtggatc	acttgaggtc	15600
aggagtttga	gaccagcctg	gccaacatgg	caaaatccca	aatctactaa	acaatataaa	15660
aattatctgg	gtgtgggcca	ggcacagtgg	ctcacgcctg	taatcccagc	actttgggag	15720
gccaaggcgg	gcggatcacg	aggtcaggag	ttcaagacca	gcctggccag	catggtgaaa	15780
ccccatctct	actaaaaata	caaaaattag	ccgggcatgg	tggcatgcat	ctgtaatccc	15840
agctactcag	gaggctgagg	taggagaatc	gcttgaacct	gggaggcaga	ggttgcagtg	15900
agccaagatc	gcgccactgc	accccagtct	gtgccacaca	gtgagactct	gtctcaaaaa	15960
aaaaaaaaa	aaaaaaggaa	aagaaaaatt	atccgggtgt	gatggcacat	gcctgtaatc	16020
tcagctacct	gggaggctga	agcaggagaa	tcgcttgaac	cctggaggag	aagtttgcag	16080
tgagctgaga	ctgcactact	gcactccagc	ctgggcgaca	gagcaagact	atgtctccaa	16140
aaaaaaccaa	gacaaacaaa	caaacaaaac	acacaataag	agaccacctc	acacccatta	16200
ggatggatat	tataaaacaa	caacaaaaca	gacaatagta	agtgttggtg	aagatgtgga	16260
gaaattgtaa	cccttttacg	ttcctatcac	tgctggtggg	aacgtaaaat	agtgcagctt	16320
ctgtggcaag	cagtatggcg	gcttcctaaa	aaatgaaaaa	tagaactatc	atatgatcta	16380
gcaattgtac	tcccgagtat	atacccaaaa	gaaccaaaag	tagcatctgg	aagagagatt	16440
tgtatactca	agttcatagc	agcattattc	ataatagcca	aaaggtacag	gcaacccaag	16500
tgtcaatcaa	tggatgaatg	gatcaataaa	atgtggtata	tgcatacaat	ggaatattat	16560
tcagccttaa	aaaggatgga	aattctgaca	catgctacaa	catggatgga	tcctgagggc	16620
attatgctag	gggaaaagct	agtcacaaag	aacaaatact	gtatgattcc	actageetae	16680
aggaaagtag	tcaaattcac	agagacagaa	agtagaaggg	gtttgccagg	gcctgggaag	16740
aaaggagaac	tattttcttt	tctttcttt	tcttttttt	tttttttga	gacggggtct	16800
ctctctgtgg	cccaggctgg	agtgcagtgg	tgcgatctcg	gctcactgca	acctccactt	16860
cccgggttca	agegagtete	ctgcctcagc	ctcctgagta	cctgggatta	caggcacgca	16920
ccaccacgcc	cggctaattt	ttttgtattt	ttagtattta	ttttgtattt	ttagtagaga	16980
cgaggtttct	ccatgttagc	ctcccaaggg	gagctatttt	ctaatgggta	cagtttcagt	17040
gtgggaagat	gaaaaaagtt	caggtgatgg	atggtgctga	tggttgtatt	acaatgtgaa	17100
tatatttaat	gtctctgaac	tgtacgttta	aaaatggtcg	gctgggcgtg	gtggctcaca	17160
cctgtaatcc	cagcactttg	ggaggctgag	gtggatggat	cacctttggt	caggtgttca	17220
agaccagcct	gggcaacata	gtgaaaccct	gtctctacta	aaaatacaaa	aatcagctgg	17280
					=	

-continued

				-contir	ıued		
gtgcggcggt	gcatgcctgt	aaccccagct	actcgggagg	ctgaggcaga	aaaatcactt	17340	
gaacctggga (ggtggaggtt	gtagtgagcc	gagatcacgc	cactgcactc	cagccgggcg	17400	
acagagtaag	actctgtttc	aaaaaaaaa	aaaaatacat	gcataaaaga	tgtttctaag	17460	
agtgctaaaa a	aatgcctaca	aattgataag	gaaaggtaaa	taatacaata	gataaatggt	17520	
caaaggatac a	aaacaagcac	actcataatg	taggaagctc	aaatggcaaa	agagcctctc	17580	
cttctctagt a	aatagaggaa	atgtaaattt	gaaagtgaag	cataatttta	cattcagtat	17640	
cttacaaaat (caagtgctga	tgaggttgta	gagcaaccaa	aactctgtaa	ctattgttgg	17700	
aagtggaagt 1	tggcattcaa	gaatgagcaa	tttagcaaca	tctcttaaaa	gtgttgatat	17760	
ccactgtcta a	agatacagaa	attccatctc	tgcatgttac	ctagagaaac	tctcatccac	17820	
aggtataaga a	atagtetttg	gagcatcatc	tgagatagtg	agccaagatc	gtgcaactgc	17880	
actccagcct q	gagtaacaga	gtgagactcc	atctcaaaac	aaacaaataa	acaaaacaga	17940	
ataaatatac 1	tcaggatatt	taca				17964	
<210> SEQ II <211> LENGTI <212> TYPE: <213> ORGAN	H: 30003 DNA	sapiens					
<400> SEQUE	NCE: 8						
agtgcccagc a	agctgcctcc	tcaccctagc	tgagctgacc	acaagattcc	agacctcagc	60	
tggagctgca (gcctcatact	ggctgagtgg	ctccaagaca	cagaaggaag	cagggtggca	120	
ggctgacctc a	agccagctgc	ctgccccctc	teetetgagg	ctggcctggg	accgatgggg	180	
ctcttccctc	caggaggggt	ttccgggcct	cctctttcc	cctacctccc	tgtggagaac	240	
tgtccacccc 1	tccagatatg	ctccagtgat	gtcggagggg	atgcctcaat	ctggcgagac	300	
gcagcggcaa	caaaatctgc	tcagagacaa	acggacatgt	tgctgatatg	aatctcactt	360	
ggtgagtggc a	aacaacagag	tcctgcattt	gggtctgtgc	agtcgtgcac	accagagacc	420	
gctgaccccc (gcccgcagca	cagggaactg	catatataca	cagcaggtac	aaatatgggc	480	
acacgacaaa a	acgcccatac	aggataaaga	tgcaggaaga	acagggcact	ccaacaggtc	540	
cgcatgcaca a	aacgcatgtg	ctctatgacc	cgcacacaca	gcacacatgt	acaaacatcc	600	
acagacacaa q	gtacacacac	atacacactt	acatacataa	gcaagatcaa	cacgggcaac	660	
tcctaagaca (caaacacaga	cccactcaat	gaatacaaag	gaaaatagac	ccagaactca	720	
cacacagaga (caaatgaaca	cacatatgca	aatgggttcc	tgaaggcatc	accccaccca	780	
tacaacctac a						840	
agttggcttc (900	
cattteecta						960	
tccagggata (1020	
ggccgtgctg	ggctgaatcg	ctggagctgg	gcaccaaggg	ggagctcacc	atcacgtcac	1080	
tgtgccaagc g	gccaagcaga	gccactgtga	ggcagtgagg	actggaaggg	cctgggagga	1140	
atagccggga 1	tcgacttttg	ctggaaattg	gcccttgcag	gcctcccttc	acccagaatg	1200	
cctgtgatca (ctgtgcctgg	gcacatgggc	ttcacttggc	aacacctgtg	ctggcctgta	1260	
ggaccaacct a	accattttgt	atcattctcc	tcccacccca	aagttgagtg	ccaaagatct	1320	
gctcctggac	ccaggcacac	ctgcccccac	tggcacacct	gggcacatct	gcccccacct	1380	

1440

accattgccc atcgtcaaca cctgcacatt ctcaaattcc agggtggtgt aggctgggtc

cagtgcagca	ctgtagtcgg	ccatgtccat	gtcgacgagg	gttttggaga	gtcgcattct	1500
ccctgcctcc	acgccgcggc	cacctgccct	accctgggcg	cccaccccga	aggeceeege	1560
cctccgccct	cccactgcct	cctcccagtg	ccctctctgc	cttcctttca	aaccgtcctc	1620
tgggaagatc	tgctgggagt	cttggcctag	cctctgtgaa	ggggtggagg	ctctgccggg	1680
gaggggtggg	ggttaatggt	taatcggtcc	cccgccggtg	gataggctgg	geggggetge	1740
agggatttgg	ctgtttgttg	gtttetgget	gacacccggg	gtgctaatta	caactgctgg	1800
ggccctaact	caccgatgtt	cagttatcaa	ttgtacaagg	caggcatcat	gactcacggg	1860
cactcatttg	acccttgact	cacccacccc	tccaagccat	tgtcacccca	agtcaggcat	1920
tctaactgat	actatcaggc	actgacagcc	tacctccgag	atcccctaat	tcaataactt	1980
cccaaatcat	tgacttctac	cctcaatgct	tttgcagaga	taaggctgcc	ccatggccca	2040
cgatttagaa	acctaaatcc	caggccccag	atgccaatct	tetggateet	tgttctggga	2100
getecettee	agttcccccg	cagtttcccg	gttcccctgg	gagcagaatg	gactggaagt	2160
ttgggagggc	cagattcacc	tccaattccc	cgctcctgct	ccctgtgatc	ccaccctgcc	2220
cctctccgtc	teccacaget	cccagtgttt	ctggcccagg	ctggctccat	ctcggatttt	2280
cccatcacat	tctcctgttt	ccctcacccc	caccccctcc	cggagcaggc	agagacctgg	2340
atttacattc	aggcacctac	cgtctactaa	ctgggacctt	gggtaaatga	ttctcctctc	2400
cgagcctcag	tttccttttc	tgtaaaatgt	acaatcaact	tcaaagggtg	gtttgagaag	2460
gaaatgagat	ggcataaatc	aagcaccaag	tggggcctgg	tagacgtcca	tcctcttccc	2520
cctcctccct	ctccctgttt	cgtatccccc	ttgccatccc	cctgtttctc	tccacccgtc	2580
tcctaccttc	agagtgggct	ttgtgggggt	atcgccagtg	cagtcacagg	caacccaacc	2640
cttagaaagt	cctggttcct	ggttcagtgc	tetgetgtgg	ttgtcctaaa	attcatcatg	2700
acttttgaac	aagggattgt	gcatttttgt	tttggacggg	gccctgaaaa	ttacacagct	2760
ggtcctggct	gtctgaagct	catggtgcac	tctgttcttc	tcactccctc	cageceteat	2820
tgccttctgt	gcagacattt	tcaagggctg	ccaatcaatc	tggggaagta	aagtettgat	2880
gtagaaggca	gagagtgagg	gcagaggaag	aaaagcctga	gacttgggag	gcctgggagc	2940
ctgtcctcca	ctgctggctg	gaagggcagg	ttggagggcc	tcggtgacac	ctgtgagcaa	3000
gagtgggcga	attagtggga	gcaccaatta	atgagtgagt	gtgtggggga	attgatgagt	3060
gggtgaatta	ggagtgagtg	aattagagac	agggagaatt	aatgagtgag	ttgagtgaat	3120
gcatgaatga	gtgagtgaat	gaacgaatga	gggtaaatta	ctgagtaagt	gagcaaatgg	3180
gtgggtgaat	taatgagtga	atgggtgggt	gaattaatga	gtgagtgaat	gagtgaatgt	3240
gtgggtggat	taatgagtga	gcaaatcggg	agtcagggca	tgtgtgttcg	agtggtatga	3300
ggaggcatct	tcatgttctt	tccactgcta	gaagcccttt	ctctgccctg	cttagcttta	3360
ttctgtccac	ttgatctgac	ctctgaagct	gagatgactg	gggagtgcta	ttgcctgtag	3420
ggaaagggga	gagggagcaa	ctgttgtgga	ggacaagaga	ggctagattt	gatgtcagga	3480
gacctggggt	taggaactag	ctcagtcact	attccgataa	ctttatttac	atcgtctctt	3540
ctcagggctt	caatttctcc	ctctgtaaaa	tagaaagatg	atcctggctc	agttttctgt	3600
tagccaggac	aagactctga	gggagggagc	aagaggcagc	cccctgcaac	ccacactatg	3660
agacttgata	aggggctgaa	agagaccaaa	taccggcggg	ttcctcccat	gcctacctca	3720
ggagtatctg	acctggctcc	accggccttg	ggggcagtgc	agaggtggga	agaaacagaa	3780

-continued

gatccgacca	aggggtaaac	acagaagaga	tgtggagggc	agctccggga	ggagcctcca	3840
agggctgagc	ccaggcctct	gccacctgcc	tggcacctat	ggcaggccac	aggcacagct	3900
actececaca	caatccagga	atacatggcc	tettecaete	tgaggcacag	ttccacattg	3960
cttaacgggg	aatgtgatca	atgtcatgtc	agaatttcat	tggcaacaaa	aataacaatg	4020
catttttcca	tagatgacat	cttagattca	attaaataag	gtctacgatc	aaccaagatc	4080
aaccacacca	tgccacagcc	atgacccgtt	atatccaaga	gctactaggt	ggacactgca	4140
aatgaagagc	tattagatac	atgaatcatg	acatacctga	cttaccaaat	gcacaatctg	4200
catgactgcc	taggaggcac	attctagatt	cacateceae	cacattataa	cctaccccat	4260
aagtaaatct	atccactcat	cactgtaaat	tgcataatct	attacataca	tgattcattc	4320
caccettage	caacgccaaa	cagtatctcc	tagatacaca	ttcctcatat	aaatgacgca	4380
ccacctataa	gatctgctgg	ctctgtgacc	tcaggcaagc	tattatttct	tttgttcttg	4440
ttgttcattg	ttactacata	gtttatttaa	accaagctat	gataatacag	ctgcccagaa	4500
tctttgtgga	ttacagatgc	aaagtaactg	gagacgtgtc	cttgcaccta	tagttcagta	4560
atagacagaa	agtttgttac	atttactaag	tacagagaac	tgaatacaca	tgacattgta	4620
catccatctt	tttgctttgt	atttccattt	taaacatatg	tatgttacaa	ctttacattt	4680
taaatatgac	tccatgtatt	ttgtgacaat	ggctaagaac	gcaatgatcc	catgcccctg	4740
aaataagcac	actttggtct	gcaatgcaga	atgttttcat	tggggtacca	aacaaaccct	4800
taacacataa	cagacaaaaa	ctccttaaaa	atcagattta	atacaatgtt	cttcatgtta	4860
gataaggaga	aagaacggga	ggtggaaaag	gaaaacattg	gggtacttta	aatgtacagt	4920
gtcttgagac	cttgaaagtt	tcaggccagg	cacaggggct	cacacctgta	atcctagcat	4980
cttgggaggc	cgaggcaggc	agatcacctg	aggtcaggag	ttcaagacca	gcctggccaa	5040
catggagaaa	ccctgtctct	actaaaaata	caaaaatcaa	aaattagcta	ggcatggtgg	5100
catgeceetg	cagtccaggc	tacttgggag	gctgaggcag	gagaatcact	tgaacctggg	5160
aggtggaagc	tgcagtgagc	cgagattgtt	ccactgcacc	tgggtgacag	agcaagactc	5220
tgtctaaaaa	aaaaaaaaga	atgttttctt	caggggatga	agagacgttg	gttcatgggt	5280
acaaaaataa	gtgagataga	aggaataaga	tctagttctt	atagcacagt	agagcgatta	5340
tagttaacaa	tcatttactt	tatatttcaa	aatagccaga	agagaagatc	tgaaatgtac	5400
ccaacacaaa	gaaatgataa	atgtttgagg	tgatggatat	cctaaatact	ttgcatggta	5460
tgcatgtatc	aaaatacatg	tgctccatat	atatgtacaa	ttattatgta	tcaattataa	5520
aaagtttcat	tecetteete	caagggattt	tttttttaac	tagtggaaaa	aagaaagcaa	5580
cttcataacg	ccctccagtg	aggaagaaca	ttatcctgac	aatgcttagg	tgctttcata	5640
tgagcacata	ataaatacag	gaagtcacag	agcaaatgtc	acagtattgg	tttggttttt	5700
atttctatgc	ttataaaaaa	tattaagctt	ctttctgtgg	actgagtggg	tgttagcctg	5760
tgggtattgg	tctctggtgc	ctgtatacca	gtgactattt	atattccaag	cccagggcca	5820
gctgtctgca	caaggcaagt	ttttatttcg	aagccttggt	tactccttct	gtacaagggg	5880
tctaacttgt	cgtttgtcgt	gaagattaaa	tgagagagta	gataagcttc	ttagcctctc	5940
ttcccctgac	ctctctttag	gggaataaac	cacagacctt	gtgggtcaga	tagatctagg	6000
ttaaaatcca	ggcagtgcca	atgtaccaaa	ctctgtgacc	tcaacttcta	cttttctcag	6060
ccttagttta	agcatcagaa	aaattgggtt	gatacettet	ttgtagggat	ggttcaagca	6120
ttaaatgacc	acgtgtaggc	atacagtaca	atagtagcaa	tcactgtcat	tggtcattga	6180

-continued
-continued

ttgcatgaca	cactggccac	ataatcagtt	ggaatcagga	cccctgctca	ggacagetee	6240
aggtaccaca	cacccagcca	tgaacaagca	ctagcctcaa	tgccatcaat	ttagcagctg	6300
ttctttacct	ctgctcactt	getgteggge	cccagctcaa	gaggcagcag	attccagggg	6360
atagcagagg	acctcagagc	ccacagagag	acccagttga	gacgggaagg	gattgccctg	6420
ggcaacctgc	agttggggag	gcatgtgtag	ggagcttgtg	cctctgctgt	ggacggtggt	6480
aagggagctg	ccactacgaa	ccacattgtt	tctcttttac	attataataa	ggtctaatgt	6540
ttacagagaa	attttgtgct	agccctggtg	ctaaaaacct	tctagccttc	tcatattatc	6600
tgcctgttga	gataggggct	attgtcatcc	ccattttaaa	gatgatgaaa	ttgaggctca	6660
gagaggtgaa	gtgacttgcc	caaagccaca	cagctcgtaa	gggaggggct	gttgtttgaa	6720
cccgagtctg	cctccagagc	ttgagggctt	cacccctcta	cgcattgcct	gcatcatgac	6780
teetggaate	cctgaaagga	cttcggaatt	ctaaggcact	ggagctggtg	gtttcactgc	6840
ctcagtcttg	caggggaact	caaggacctg	agaagtaaag	caccttatcc	cggggtatag	6900
gcaggggcag	gggcatcctc	cacacgcctg	gccaccccag	ggctgcttgg	catcttcact	6960
teceettgge	gctcaccaca	ccattatctc	ctatctttc	ttccccaccc	accactccgg	7020
gagaggtgca	gagaaaactg	ggacttatca	agacaaagaa	caaaagtcgt	ggaggaaaga	7080
agccaagagc	catctctact	ctggggtagg	gcccttcagt	tttgcccctt	tgaaatttca	7140
aattccagtt	tgtggacaaa	gtcctaacta	tctcacaata	taggtcccca	accactgacc	7200
aaactccagt	ccaggcagcc	accagctggc	ctggtcttgc	tgcttccttt	agcggcttcc	7260
aaggtccagg	gacagggggt	ctgggccacc	aagaggctct	gctaggctgt	ccctgcagcc	7320
acagccaccc	cactggaccc	ctgcctccca	tctgagagga	cagccctctt	cctggagctg	7380
ggatctgaca	cttgctgata	ccaacggcag	ataccaggta	ggtcccctcc	ctttctcttc	7440
cttgagctcc	taaaatgcca	ctcataccac	cctctgcact	cggcaaaggc	cactgtggct	7500
taatcaaatc	aggcacccac	aaagcttcaa	gactggaaaa	gatgccttgg	ctaacccacc	7560
catttagtgg	acggaaacac	tgaggccgtc	aggggagtgg	cagctggcca	cagactgaac	7620
catagacttg	gggcccagac	ctggggcccc	tcacggagcc	tcagagggtg	aaagggactt	7680
gctcaagtcc	acgcagcggt	ggtgggtgag	ctttgtctta	acaacgagca	ctttctactt	7740
catcacagac	catgagtggc	attgtgtttg	ttcacccgat	gatgggtggc	cactggcttg	7800
ttcacccgat	gatgggtggc	cactggcttg	tcacaggagt	atttccgaga	ggaagatgag	7860
ggagcttggg	gctgaaggcc	agtgggtttg	gaaggaagca	acattcatgt	ggttaactga	7920
taactgggcc	ccatccctgg	gcctccttcc	tccctccctg	tccttagcct	gattaagacc	7980
aacttaccca	gctgctaatc	attgctgagc	ctgttgattt	tgccttaaaa	aattaactgg	8040
gcatgagttt	gcggttttcc	tcacccctaa	ccctgaaaag	gcctgggtgg	gcaggaggcc	8100
tccagggtta	tgcaagaggc	cgctggcctc	ccaacgcata	gcccacggcc	acctcggctg	8160
ctctccaaag	aagaggcttt	gctcaagagt	caacagtctg	cttgttcccc	ctgtgctggg	8220
tcctgagcaa	atttgctctg	ttaccaaaga	gagataaagg	cagctggggg	agagetttee	8280
aaacagggat	gggaagcggc	agctttgagc	ttggggttct	agaactctgc	agtgtcagag	8340
ccaggagaat	ctttaggagg	atgtgggctg	gggtttttca	agctgggttc	cgaggctccc	8400
aggagccaag	ggtatgcatc	cacaggccca	gcttcaacca	gcgactccct	tttacatgta	8460
gtcttaatat	tttatttgag	ggttggaaaa	ccactgattc	agccccatcc	cctcattgca	8520
	, ,		_	-	9	

cagatgggga	gatggagatc	agaggggaa	gtgacttgtc	caaggacaga	aggtcacctc	8580
gggtattcag	gggctccagc	cagcatggga	atgaatggtg	ggetetetgt	ggacccgggc	8640
aatgtcttga	aagacattgg	tgaacaagac	ggctctgcaa	acgccttgcc	atgccgttct	8700
cccctcctc	ccagggctgg	ctggaagcag	agaggtgcct	gagagccatt	ggaagaccca	8760
agtcagggga	atgcacctgg	ctctgtgtcc	catgggccct	gtgaggatat	gaccagcagc	8820
caggcactgc	aaaccggaga	ctacgttata	atccatctca	gccacgtcct	gtctctggag	8880
gcatcagcac	tttgggaggc	tgagatggga	ggattacttg	agcccaagag	tttgagacca	8940
gcctgggcaa	catagtgaga	ccctgtgtct	attttttaaa	aagattttt	aaaattaaag	9000
acagatgccc	agtccctatc	acaaaaaaag	atgtagagcc	ctgccctgac	tctctccacc	9060
tctctgagcc	tcagtttctt	cacctgtaaa	ttgggaatta	taatacttaa	cttccagggt	9120
tgtcatgaaa	atgaaatgaa	gcaaaatata	cacattgatc	atcatggcca	ctggatatgc	9180
agctgtttta	ggagctttgc	atgtgttact	tccttgatcc	tcccagccac	tctgggaggt	9240
aggcaatgtt	ttcaccaatt	ttttacacac	cagaggcaca	gggaggttga	gccatatacc	9300
catgctcaca	cagctgatga	gaaacaagaa	gtggaattgg	aacttgggca	gtctgtctct	9360
agagtctgtg	cctctaactc	cagggctacc	cttcccttcc	agggatgcca	gtgagagatg	9420
gccaggagaa	gggcagagag	cagggcactg	tgggagatgc	tgactgtaag	gctccggagg	9480
tagggcagag	agtatggtct	ggagaatgat	caggaaggaa	gccaggagga	cttggatctg	9540
tgtgggtgga	getteteege	aggetgeete	ctgccaggtg	gcttatgaca	tctgggctga	9600
gggtgttgct	gteeteetgt	ttatgttcat	ccctcctgtt	tatgttcctg	aatttatctg	9660
caggggtgac	cttgggaatt	agatgeggee	tteeeggeee	ttgtggggcc	tgaaggctga	9720
tgggagcccc	tgcctgaccc	agactctggt	ttggggagtg	agggetgage	ccacatccca	9780
gaagccaccc	ttggtctccc	catactcttg	ttctgagggg	ccccagggat	ttgccaggtc	9840
actaaggtga	agtgtttgga	agtcctgagg	ctcagatcag	agttactgcc	ctgtacagtt	9900
gtgcaggttg	ctcactgcac	aaaggttctc	cagccaagag	ggcaggtagg	gatggaaacc	9960
cagecettgt	tccacttgcc	aagcgaagtg	cccatggagc	tetgeetgee	cagagtgggg	10020
tgcctttttc	ttatttgccc	tagggettea	tgtaagctgc	tgggtgtcct	geeceagete	10080
tggttccagc	cactgtgtgt	ccttgggcaa	ggtcatttcc	ctccctggcc	ttggtttccc	10140
attggagaag	ttttgtctaa	caaagcagag	actcatctct	gaagatgaaa	tagaatcatc	10200
tgaaaccttt	aaaatataca	gatgttggcc	gaacatggtg	gcttacacct	ataatcctag	10260
cactttggga	ggctgagatg	ggaggtttac	ttgaacccag	gagtttgaga	ccagcctggg	10320
caacatagtg	agaccctatg	tctattttt	aaaaagattt	tttaaaatta	aagacagatg	10380
cccagtccct	atcacagatc	aatgatcgaa	tcttggggta	ggggtgggga	ggtgccaggc	10440
gtctatattt	ttgtgcagcc	aatattgaga	cccactgtag	gggggcttca	aatttgaacc	10500
tggaaagcct	tcgatggcat	caagttctat	cacttactac	aacttactag	tcaaaacctc	10560
agcgaggctc	agttttccca	tctgtaaaga	gggaatgatg	atcgtttcct	cacaaaatca	10620
aaatgccaat	taaatgagat	aatgttcaga	cagtgcttgg	caccatgttc	cccaagtagg	10680
gageteetga	ttcttgctac	caagactatt	attgttgtta	tgggcaattt	gacgttgaca	10740
aaataaaggg	cctttctagg	tcaaggattc	ggtgacttga	agacaggcct	cctctgttgc	10800
	tttctagtac					10860
	attattatta					10920
555-5-5				5-5		

ttttgaattg	gtgctacatt	cgcatggttc	agaatcaaaa	cataaaaggt	gtaaattgag	10980
aagtcttgct	tccagctgtc	tcctgttcac	ctgttctcct	tgacttcctc	actatgggga	11040
accacatccc	ttacagatgt	atctgccaag	gtttctttat	acagaccaga	tagcatgtaa	11100
gatcatacat	gagtagcctc	tgctcttaca	ctgttctgta	tcttgtttgg	ttcatttaat	11160
atcacaacct	ggagatgctt	ccatagcagc	tgagagcaag	ctttgaggat	ggaagggttc	11220
tcgtctccca	tcacaggtga	ggaaactgag	gctcagagaa	gaaacatcat	tttcccagtg	11280
agccaaggca	atggtgttag	aactatctct	acctggctcc	agagcttgtg	tttatgcccc	11340
tgcaccgata	cggccttcca	tgaagcccgg	cccagaaagc	tttggagtct	ggttacatct	11400
ctgccatgca	ggcctggcct	teccaggaca	agaggtgagg	aggggggctg	teggggteet	11460
cactgtgtct	ggactcagaa	atcccaaaga	gaggatgaag	tgtagaacaa	agaatgtccc	11520
aagtcatcca	gatagggacc	cagtgggaag	gtgtcccctg	gatggaatag	tgggggcctg	11580
gtggctgtgc	ccgtcagcac	tggagaacct	gccaggaact	ctctgccagc	ctcaggtggt	11640
gegggtggea	ggggaagtca	ggaggaggat	gagaggcagg	gagggaagca	tggccgatga	11700
gacaagctct	gggtgagggg	atggagggga	ccccatgcct	ggagctcagg	aaggaggatt	11760
tggagttcaa	ggcagaagtg	gcaatgagat	tttaaccgat	tgttttctgc	tcagggaact	11820
tcagggttcc	ctctggattc	ttgacctgct	tcagtttgct	gactcactgg	ctttgggcaa	11880
gtcattttcc	ctctccgtgc	ctcagtttcc	ccaactgcaa	aatgagagag	ataagagatc	11940
tggtctttag	gcagccttgg	actaccccta	atactctacg	gggctcctct	caccttgttg	12000
aggtcgtctg	gattctcctt	ctctgattgg	aacgtcattc	acccatcagg	gccatggacg	12060
tteetgggtt	aggggatgag	ggtacaaatc	ctccacactg	ctcccagtct	ggaatcctcc	12120
cccttggttc	tgtgtctctc	tcctaccatc	ccatccttcc	ttccaggcag	atgtggagtc	12180
aggaccatac	ctggtgggtc	ctgggggaag	ccctggcccc	agtccgacat	cctcctcctg	12240
ctgctatggg	gtcccgcaca	gtgcacaacc	tcttcatcct	tgagggagct	cctgctggcc	12300
cctctcagca	ccccagaccc	tgcgagggcc	gctgggcaga	gttaatccct	taatactggt	12360
cacaatgaga	tttcagggat	ggtgggaggc	ggtctccatg	gaaactgcag	acctgtccag	12420
gatccatgca	aggaattagc	cccagggctc	tgcaaggggc	tcctagagag	ccaaccccaa	12480
taggaatggg	agacacagtg	gtctggactc	ctgggtcctg	ctctggccct	cctgttgtct	12540
ctctggaggg	cttggaaaaa	accataactc	ttgcattgct	tcagtattct	gctcaactgg	12600
acagagccat	attcacaggg	agagccctat	cacctttctg	agcgtgtttc	tccatccccc	12660
tattggcatt	gtaatcctta	acccagtggc	ttttctagaa	gagtgcaggc	ttcagagtct	12720
gccagacctg	agcttgaagc	tcagcttttc	cctccacgac	tgtaaactta	gccgaggcat	12780
ttcacttctc	tgagcctcag	cttcctcatc	tgtatgatgg	gcacaataat	agcaacatgg	12840
catccctctt	gtgctggctg	gtgggtagta	acatccagtg	aatgtgagtc	tccttctcac	12900
cttttcctga	ctgccacgcc	cacactgcac	atttgccctc	cccagccccc	tgcagcttcc	12960
agaaccccgt	ggtctcaagc	agagagctgt	cgcacttcct	tctttgcctt	ctcatcctcc	13020
aagtcccatc	ttagtcatct	tcctccggga	aacagaacgc	cggggtcctc	ctctgtcccc	13080
ccatagcccc	caaagcttta	catcatcatc	gtttagtcag	atggtaatta	gactggttgt	13140
gtgcctcctc	cactggactg	tgtcccatct	accattgtat	tcccaggacc	cacttgatat	13200
aaataggctg	gatgaataac	tgagtgaata	aaggatggaa	atcgtccatc	gaaacagtca	13260

acatttattc	agcaccttct	gcgtgcatcg	ttgtgggtgg	tggagatgca	gcagggaaga	13320
ccatgggcaa	aatatccccc	tcagaggggt	gcagatgagc	aaataaaaat	acaggatgcc	13380
cagtcaaatg	tgaatttaag	atacacaaga	aatacttcgt	tagtatgagc	gtgtcccaaa	13440
taatgcatgg	gacctgctta	tacttttaaa	ctgtggtgtt	catctgacac	tcatatgaaa	13500
ctgggtgtcc	tgtgttgtgt	cgggcaaccc	tacaccctcc	ctcacagagc	ttgcgttttg	13560
gtggagaggc	gggttgcaga	cataagcaag	taaatacatg	aaaaacgaag	tcaattacaa	13620
acagtggtta	agtgcagtga	agacgcacag	cgcgatgtga	tagcacctgg	ggatgggcag	13680
gacgatecee	tgagctagtg	geetttgeet	gcacaggtca	ttttagctcc	aatgagatgc	13740
cactttgcaa	aagttetttg	aggatettaa	agggcacggt	ggaggetget	aaacttgaga	13800
gaaggactct	gaggagggca	aggggcgcac	ctgagggagt	ggggctgcta	agtctcactt	13860
gatagactcc	acagttttgc	aacttggatc	tgggccttca	caaaccttcg	cgaacccgca	13920
gccccacccc	tegggteage	caatgtcttc	tgtggggctg	ggagccaggg	gaagaggcca	13980
aaggaactgt	gcagagaagc	gtggccaccc	gggccgcagc	tgggagccct	gacacccttt	14040
geegeeeeae	ctcatcccgc	ggttgcccca	gggcgcaggg	cagggcaggc	accgcgctgg	14100
gccggagggc	gtcccggagg	aggcggccaa	gactctccgc	agtgctgcgc	tttgcgcttc	14160
ctgggctcct	cctcgtggcc	aacgcaggaa	ctggtgttca	gaaacttaga	tagccttagg	14220
gacttcacca	atcacagcaa	tecegecaat	cacaggccca	gacgcactat	gtctctccaa	14280
atccagagga	ggeetgeteg	gttcgatcac	caatcacagc	tcgttggatt	tagttaccta	14340
aaagaacatc	tecceateae	acaccagcac	atggccacgg	cagcaatcag	aacgtaagat	14400
tttaaaacca	gttcccaggg	tagcagccgc	tgcccttcca	ccacctacta	aacttctgtt	14460
cccagcacct	tgttccaatg	tacgggggtg	ggggggtct	ttgaggaagg	ttccaggctt	14520
tgtgctgctt	ccatgtggaa	gcagatgtta	gcatgtatgg	ggcatgtata	atgatattac	14580
tatcagtaaa	tgtcataccc	attatgaaaa	ttaagatagg	cagggcgtga	tggtgcatgc	14640
ctgtaactcc	agctttaggt	ggccaaggtg	ggaggatege	tggatcccag	gagttggagg	14700
ctgcagtgag	ccacgatggc	gccactgcac	tccagcctgg	gtgatagagt	gagactctgt	14760
ctcaatttaa	aaaaaaaaat	taatgtgtgg	atataggagt	gtggaaaaat	tataaccttt	14820
gggttagaca	cacctggagc	ccatatacta	tctttgtgaa	gtaggacgac	tcacctcccc	14880
ttcctcagtc	gtcaaaagag	aatgatagtc	atatctacat	gtcatatatc	atcacccacc	14940
ttctctcaat	tattcaagcc	aacatcttgc	aagtcacaat	ctttgtgttg	tgtttctcat	15000
gccttccagt	tcatcagaaa	atccagttct	tgccaccctc	caaacagaat	ctagattttc	15060
catctttcca	tctccacccc	agccaacctt	atgcatcatc	tctggaggtc	tgcaaaagtc	15120
ttttcacttc	ttcccttttt	tttttttaa	acctgccagg	gttggggagg	ggateteece	15180
cgctccaccg	cccccccgc	ctccccccc	ccccgcctgc	ctccacccca	ccccttcact	15240
ttttctcctg	tggcttccct	accccctact	cttcactcag	gggccaaggg	tgatcttgta	15300
caaatgtaca	ttggctcaga	tcctcttcta	cttaaatttt	tatgacttcc	tatgcattta	15360
taacaaaact	catacaactc	ccacttaaca	ctgtgaggcc	atgcacgccc	ttgtttttat	15420
atccctccgt	gtccaacctc	atttcattcc	acttgccccc	acccctatca	gcagcaggca	15480
tactagccat	tttaaagttt	ttctttcctg	tcttgggggc	ctttgcatat	actttcccct	15540
			tttttttt			15600
			ctcggcttgc			15660
J				- 3	5	

ttcaagcaat	teteetgeet	cagcctcctg	agtagctggg	atccacaccc	agctaatttt	15720
ttaattttta	gtagagacgg	ggtttcgcca	tgttggccag	gctgatctca	aactcctgac	15780
ctcaggtgat	ccacccacct	cggcctccca	gagtgctggg	attacaggca	tgagccacca	15840
cacctggcct	ggaatacatt	ttagtaagtg	tttaatggat	agttgttgga	tgaatgactg	15900
aaaaggtctt	tcaagaggaa	ctgatagtga	tgtaaacttc	aagtgctcgg	tgcgtaacag	15960
gtattcaatg	aaaaggattc	tatgcatata	gtagaaattt	tggaaaataa	aataaaaatt	16020
gaagatttaa	aaatcgtatg	tgctccaaca	tttagaaagg	ttcaaactct	taatggctaa	16080
ccagggtttc	ttgacctaag	cactaatgac	atttgggcta	gagaattctt	tgtcgtgggg	16140
actgtcctgt	acattgtccc	tggcagcatg	tetggeetet	agccactaga	tgtcagcagc	16200
acttttccct	accctcaagg	tgtgataatc	aaaactatct	ccagacattt	ataaatgtcc	16260
cttgggggtt	gaaattatct	ccactgagaa	ccactgtgct	gggcttctac	ccttacaaga	16320
aattttctct	cagtcattca	atgettetea	aatcttggtg	tccataagaa	tcatctgggg	16380
ccattattaa	aaattcagat	ggcagctggg	cgaggtggct	tacacctgta	atcccagcac	16440
ttcgggaggc	tgaggcaggt	ggaccacttg	agttcaggag	ttcgagacca	gcctgccaaa	16500
catggtgaga	cctcgtctct	actaaaaata	caaaattagc	cgagcgtggt	agcacatgcc	16560
tgtaatccca	gctacttggg	aggetgagae	aggaaaatca	cttaaaccca	tgaggcagag	16620
gttgtggtga	geegggateg	tgccattgca	ctccagcctg	gttaacaaga	gcaaaactct	16680
gtctcaaaaa	aaaaaaaaa	aaaaaaaaa	tcagatggtg	gctgggcacg	gtggctcacg	16740
cctgtaatcc	cagcactttg	ggaggtgggt	ggatcacctg	agttcaggag	ttcaagacca	16800
gcctggccaa	catggtgaaa	ccctgtctct	attaaaaaaa	aaattagcca	ggcgtgatgg	16860
tgcatgcctg	taatcccagc	tactcgggag	gctgaagcag	gagaatcgct	tgaacctggg	16920
aggtggaggt	tccagtgagt	gaagatcgtg	ccactgcact	ccagcctggg	cgccagagcg	16980
agaccctgcc	ttaaaaaaaa	caacaaaaaa	aatcagatgc	ctggggtcct	acctccaggt	17040
gccaggacca	acagtgggcc	tagtcatcag	attaaaaaaa	agaaaatatt	taataaatag	17100
aggtggggca	tggtggctca	tgcctgtaat	cccaacactt	tgggaggcca	aggcaggtgg	17160
atcactggag	actaagaatt	caagaccagc	ctggccaaca	tggtgaaacc	ttgtctctac	17220
taaaagtaca	aaaactagct	gggtgtggtg	gtgcatgcct	gtaatttcag	ctacttggga	17280
ggctggggca	ggagaattgc	ttgaacctgg	gaggcggagg	ttgcagtgag	aagagatcag	17340
gccactacac	tccagcctgg	gcgacagagt	gagagtccat	aaattaataa	acaaacaaat	17400
taattaatta	aaaaatagag	acggggggag	gtgtcttgct	atgttgtcca	ggcttgtctt	17460
gaaccccagc	ctcaagcaaa	tcagcctccc	aaagtgctgg	gattaaaggc	aggagccatg	17520
gagcacctgg	cccaagtgtt	taatgagctt	ctgggcactt	ctgataccag	gtgccctcag	17580
accgcacttt	gaaaactcct	caaggaggcc	tctcaatcac	ctgatcacca	aaccctgtgt	17640
gaggctccct	acccacctgg	accctctcct	tgaattcctc	tcctttccaa	ttattaccct	17700
tccctagata	gcaagtggtg	acagaaccaa	accctagctc	agccaaagcc	caaattgcct	17760
catctccctt	cagggaatag	gcaaaaaaaa	aaaaaaaaa	aaaaaaaaa	gatcacagag	17820
ttcagctgaa	accacttagg	aaatatcagc	atccccacct	ccccacccaa	aaggactcct	17880
gagtggcagc	ctgagaggtg	tgtctgctca	tcagaataat	gttgtcagac	tgtgttcttt	17940
ctgggggatc	atcacactcc	cttttctggg	aacaaatgtt	ggccacttgg	tgggatgggc	18000

catcatgatc	tacgtcagac	aaattcagtg	agtcatgact	cagcctatct	ctctagaccc	18060
atcttttatg	ccccttact	tatagtctct	ctgagggctg	ttctcaacta	ttctatttct	18120
ctcctttccg	gcacatgatg	gggattacat	tttcttgctt	cctttgaaat	gagatgtgac	18180
catgttactt	gtttcaggta	acgagatgtg	agcagaaaca	acctgtgtca	cacctgggca	18240
gaagctttaa	aggccagtgc	tgcccttgtt	ggggaagcaa	gtatagatat	gaatcgttcc	18300
acaacgcgga	gegeeeeetg	ccgacccatg	ctgggcgtgt	actataggtg	agcaattaac	18360
tttgctgttc	aaaccattga	gacttagggg	tttttttgtg	gttgcaagct	aacttcactt	18420
cacttgactg	aacacagtct	ttccaaagtt	tcactaattt	tttaatgacc	attatgattt	18480
tttcatatct	gtaacatttt	tcttacatca	actcacttct	ttttacttca	atttatttta	18540
gaaagaaata	ttattactac	caaatgaaac	agtatcataa	gtagaaagca	atgagaaaat	18600
aaacagaatg	aaagaaatcc	tgatatcaaa	tcctgactta	atactatttg	cctttcaaag	18660
cctctggacc	tttggtcttt	atttaaaaaa	aaaaaaaaa	aaaaaaaaa	ggagccaggg	18720
gccaggcgtg	atggctcaca	cctgtaatcc	caggaatttg	ggaggccgag	gtgggaagat	18780
cacctgaggt	caggagttcg	agaccagcct	gaccaatatg	aggaaacccc	atctctacta	18840
aaaatacaaa	aattagccgg	gtgtggtggc	atgtgcctgt	aatcccagct	actcaggagg	18900
ctgagacagg	agaattgctt	gaacctggga	ggcggaggtt	gcagtgagcc	gagatcgctc	18960
cattgcactc	cagcctgggc	aacaagagtg	aaactccgtc	ttaaaaaaaa	aatgggagcc	19020
aggtgcggtg	gctcatgcct	gtaatcccag	cagtttgggg	ggctgaggtg	ggcagatcac	19080
ttgaggtcag	gagttcaaga	ccaccctage	caacatggtg	atateetgte	tctacttaaa	19140
atgcaaaaat	tagctgggca	tgatggcatg	tgcctgtaat	atcccagcct	cttgggaggc	19200
tgaggcagga	gaatcacttg	aacccaggag	gcggaggttg	cagtgagctg	agattgtacc	19260
actgcactcc	agcctggggg	agagagttga	gactccgtat	ttaaaaaaaa	aaaaaaaaa	19320
gaggtcccca	agagtacttc	tcaatctttt	ggatccccaa	agctgtctaa	gattgtcaga	19380
atatttgaag	gcagcacagt	attgaggctg	agtgtaccaa	ttctggaact	tgacatcctg	19440
ggcttaaatt	ctggttcagt	catggactag	ctgtgtgacc	ctggacaagt	tactgaactg	19500
ctctgtgact	gttttcttat	ttgcaaaata	gtgaccataa	tgatgtgtat	ggcattaggt	19560
cgtggtgggg	attatttgtg	ttaatgtata	aaaagggctt	agaagtgtgc	ctggcactta	19620
gtgagtgcta	tggaggcatt	acctataaaa	tgatggcagg	atccagatcc	aaatagattt	19680
ggtgaattat	tgtttgtttt	ttttgagaca	gggtetetgt	cactcagget	ggagtgcagt	19740
ggcgccatca	cageteactg	cagcctccaa	gtctccaggc	tcagatgatc	ctcctacctc	19800
agcctccaga	gtagctggga	ctacatgtgt	ggaccaccac	ccctggctaa	tttttctata	19860
ttttgtagat	atgggatttc	accatgttgc	ccaggctggt	ctggaactct	tgggttcaag	19920
caatctgccc	cttcttagtc	ttcaaagtgt	tgggattaca	gacgtgagtc	accccaccca	19980
gcctggagaa	atgtttgaac	tccatggaga	taagtaaaaa	atcctctgca	ttggttaaaa	20040
ataaatcacc	tggatgattt	atttatttag	tgtagatggg	aaaagctacc	ttagcagaaa	20100
gtgacatagc	aaaattctag	aggttttact	tggtggcagc	tgcccaaacc	tctaacccag	20160
tcgtatgtat	cattagagag	aatgtagttc	ccaggtcaga	ggagctaaga	ggtccttggc	20220
attctactcc	taaggagcat	atatggacaa	ttgtgtttag	ttttcatttt	aatatgaata	20280
cttaaaattt	tcctaggatg	gcagaggatg	agaaagctat	gccccttagg	ccgagtgcag	20340
	catgcctgta					20400
55 -	J J	33 3-	300 30-	33 333-		

gtcaagagat	cgagatcatg	ttggccaaca	tggtgaaact	ccatctctac	taaaaataca	20460
aaaattagcc	ttgcgtagtg	gtacgcacct	gtagtcccag	ctacttggga	ggctgaggca	20520
ggagaattgc	ttgaacctgg	gaggcggagg	gtgcagtgag	ccgagatctc	gccaccgcac	20580
tctagcccgg	cagcagagcg	agagttcgtc	tcaaaaaaaa	aaaagaaaga	aagaaagaaa	20640
gaaagctatg	ccccttgaag	aataatcaaa	gatccaaaag	agttttgggc	tgggtattgg	20700
agaagaggag	agaaaggtgg	tgtagcagag	tggtcagggc	cattgccttt	gaaatatcag	20760
tggtgccatt	tacatagctg	ttggaccttg	ctaaaatcat	aagctcttca	agccttattt	20820
gcttcatcta	taaaatagga	atcaatgata	ggaccttttc	atagattgct	ttgtggagta	20880
aatgtgttaa	accttataaa	cctggcaggt	agctgcccag	catatagttg	cgttatttac	20940
tcaattcaaa	gtactttcct	gccgggtgcg	gtggctcagg	cctgtaatcc	cagcactttg	21000
ggaggctgag	gtgggtggat	cacttgaggt	caggagttcc	agaccagcct	gaccaacatg	21060
gtgaaaccct	gtctctacta	aaaacacaaa	aattagccgg	gcgtggtggc	agtcacctgt	21120
aatcccagct	acttgggagg	ctgaggcaca	agaatcactt	gaacctggga	ggcagaggtt	21180
gcaatgagct	gagatcgtgc	cgctgcacgc	catcctgggt	gatagattga	gactcagtct	21240
caaaaaaaag	gcaacaaagt	actttccttt	ggaaaagagt	gcccactggc	tgggtgaagt	21300
ggctcacgcc	tgtaatctca	gcacttgtgg	ggctgaggca	ggcagatcag	ttgaagccag	21360
gagtttgaga	ccagtttcac	gtggccaaca	tggtgaaacc	ccgtctacta	aaaatacaaa	21420
aataagccag	atgtggtgtc	atgtgcctgt	agtcccagct	actcaggaga	gtgagacagg	21480
agaatcattt	gaaccctgga	gttggaggtt	gcagtgagca	gagatcgtgc	cactgcactc	21540
cagcctgggt	gacagagtaa	aactctgtct	caaaaaaaaa	aaaaaaaaa	gctctcactg	21600
attcctacag	cttcagagaa	tgaacgagga	ccaaaatgtg	gatgctacag	ggaggaaact	21660
tgaggctcaa	aatggagatc	tttctataaa	atacaattgt	tctaccacag	gaaaagctgc	21720
tttattaagt	agtgagtatt	ccgtcattgg	aagtattaag	cccaagctaa	atggtcaact	21780
gtcagggaag	gatggtgaga	ggattccagt	gggttagagg	tcaaagagcg	tctaccaggt	21840
gcaaaagtct	taattaacaa	agtactatca	aaaccaaatt	catgtttggg	aaactgtata	21900
tccacatgca	aaagaatgaa	atcagactct	ttccttacac	catatacgaa	aattaactaa	21960
aaatgagttt	gacggaaaag	tataaaacct	ttggaataaa	acataaggga	aaagcttcat	22020
gatattagat	ttggtgatga	tttcttggat	atgacaccaa	aagcacagga	aatttttaaa	22080
aattagataa	attggactac	atcaaaatta	gaaaaatttg	tgcaccaaag	gacacttgac	22140
tgagtgaaaa	agcaacttac	agaatgggag	aaaatatttg	ccaatcatat	atctgataag	22200
gggttaatgt	ccgaaatata	taaagaactc	ttacaactca	ataacaacaa	ccaaaaactt	22260
taaaaatgga	caaagaggcc	aggtgtagtg	gctcaagtct	gtaatctcac	cactttgtga	22320
ggcagaggca	ggaggattgc	ttgagctcag	gagtttaaga	ccagcctggg	caacatagtg	22380
aaactttgtc	tctacagaaa	aatttaaaaa	ttagccaggc	atgctgcaca	cctgtagtcc	22440
cagcttactt	gggaggccga	ggtgggagga	ccacttgagt	caaggagttt	gaggctgtgg	22500
tgagccacga	tcctgctgct	gcactctagc	ctgggtgaca	gagcaagacc	tgtctcaaga	22560
aaacaaaaaa	attggcaaag	gacttgaata	ggcatttctc	caaggaagat	atacaaataa	22620
	cataaaaaga					22680
	aggctgggca					22740
			- 5 50000		- 333 55004	/ 13

gggcaagtgg	atcacttgag	gtcaggagtt	tgagaccagc	ctggccaaca	tggcaaaatc	22800
ccaaatctac	taaacaatat	aaaaattatc	tgggtgtggg	ccaggcacag	tggctcacgc	22860
ctgtaatccc	agcactttgg	gaggccaagg	cgggcggatc	acgaggtcag	gagttcaaga	22920
ccagcctggc	cagcatggtg	aaaccccatc	tctactaaaa	atacaaaaat	tagccgggca	22980
tggtggcatg	catctgtaat	cccagctact	caggaggctg	aggtaggaga	atcgcttgaa	23040
cctgggaggc	agaggttgca	gtgagccaag	ategegeeae	tgcaccccag	tctgtgccac	23100
acagtgagac	tetgteteaa	aaaaaaaaa	aaaaaaaag	gaaaagaaaa	attatccggg	23160
tgtgatggca	catgcctgta	atctcagcta	cctgggaggc	tgaagcagga	gaatcgcttg	23220
aaccctggag	gagaagtttg	cagtgagctg	agactgcact	actgcactcc	agcctgggcg	23280
acagagcaag	actatgtctc	caaaaaaaac	caagacaaac	aaacaaacaa	aacacacaat	23340
aagagaccac	ctcacaccca	ttaggatgga	tattataaaa	caacaacaaa	acagacaata	23400
gtaagtgttg	gtgaagatgt	ggagaaattg	taaccctttt	acgttcctat	cactgctggt	23460
gggaacgtaa	aatagtgcag	cttctgtggc	aagcagtatg	gcggcttcct	aaaaaatgaa	23520
aaatagaact	atcatatgat	ctagcaattg	tactcccgag	tatataccca	aaagaaccaa	23580
aagtagcatc	tggaagagag	atttgtatac	tcaagttcat	agcagcatta	ttcataatag	23640
ccaaaaggta	caggcaaccc	aagtgtcaat	caatggatga	atggatcaat	aaaatgtggt	23700
atatgcatac	aatggaatat	tattcagcct	taaaaaggat	ggaaattctg	acacatgcta	23760
caacatggat	ggatcctgag	ggcattatgc	taggggaaaa	gctagtcaca	aagaacaaat	23820
actgtatgat	tccactagcc	tacaggaaag	tagtcaaatt	cacagagaca	gaaagtagaa	23880
ggggtttgcc	agggcctggg	aagaaaggag	aactattttc	ttttctttc	ttttctttt	23940
ttttttttt	tgagacgggg	tctctctctg	tggcccaggc	tggagtgcag	tggtgcgatc	24000
teggeteact	gcaacctcca	cttcccgggt	tcaagcgagt	ctcctgcctc	agcctcctga	24060
gtacctggga	ttacaggcac	gcaccaccac	gcccggctaa	tttttttgta	tttttagtat	24120
ttattttgta	tttttagtag	agacgaggtt	tctccatgtt	agcctcccaa	ggggagctat	24180
tttctaatgg	gtacagtttc	agtgtgggaa	gatgaaaaaa	gttcaggtga	tggatggtgc	24240
tgatggttgt	attacaatgt	gaatatattt	aatgtctctg	aactgtacgt	ttaaaaatgg	24300
teggetggge	gtggtggctc	acacctgtaa	teccageact	ttgggaggct	gaggtggatg	24360
gatcaccttt	ggtcaggtgt	tcaagaccag	cctgggcaac	atagtgaaac	cctgtctcta	24420
ctaaaaatac	aaaaatcagc	tgggtgcggc	ggtgcatgcc	tgtaacccca	gctactcggg	24480
aggetgagge	agaaaaatca	cttgaacctg	ggaggtggag	gttgtagtga	gccgagatca	24540
cgccactgca	ctccagccgg	gcgacagagt	aagactctgt	ttcaaaaaaa	aaaaaaaata	24600
catgcataaa	agatgtttct	aagagtgcta	aaaaatgcct	acaaattgat	aaggaaaggt	24660
aaataataca	atagataaat	ggtcaaagga	tacaaacaag	cacactcata	atgtaggaag	24720
ctcaaatggc	aaaagagcct	ctccttctct	agtaatagag	gaaatgtaaa	tttgaaagtg	24780
aagcataatt	ttacattcag	tatcttacaa	aatcaagtgc	tgatgaggtt	gtagagcaac	24840
caaaactctg	taactattgt	tggaagtgga	agttggcatt	caagaatgag	caatttagca	24900
acatctctta	aaagtgttga	tatccactgt	ctaagataca	gaaattccat	ctctgcatgt	24960
tacctagaga	aactctcatc	cacaggtata	agaatagtct	ttggagcatc	atctgagata	25020
gtgagccaag	atcgtgcaac	tgcactccag	cctgagtaac	agagtgagac	tccatctcaa	25080
aacaaacaaa	taaacaaaac	agaataaata	tactcaggat	atttacagac	acttttattt	25140

tattttttgt	tatttcaact	ttgtttttt	tacctgcctc	ccaggtttaa	gcgattctca	25200
tgcctcagcc	tcccaagtgg	ctgggattac	aggtgcccac	caccaggcct	ggttaatttt	25260
tatattttca	atagagatag	ggtttcacca	tgttgcccag	gcttgtctcg	aactcctgat	25320
ctcaagtgat	ccacccgcct	cggcctccca	aagtgcttgg	attacaggca	tgagctaccg	25380
cgcccggctg	catgtgtttt	taaacattgc	ctggcccgtt	atttcaactt	ttattttcga	25440
atcaggaggt	acacgtatag	gtttgttaca	aaggtatatt	gcatgatgct	ggggtttcca	25500
gtatgaatga	attcatcacc	caggtaatga	gcatggtacc	caataggtag	tttttcaaca	25560
tttgccccct	ccctctctaa	cccctttggt	ttctccagtg	cctattgttc	ccatctttat	25620
gtccatgtgt	acccaaggtt	tagcccccac	gtataggtga	gaacatatgt	tatttgaatt	25680
tctgtttctg	cattagtttg	cttcggataa	tggtttccag	ccatatccat	gttgctgcag	25740
aggacatgat	ttcattcttt	tttatgactg	tatagtactt	catggataca	cagcatttta	25800
tctattttat	ttctttttta	ttttatttt	tgatagagac	agggtttcac	catgttgccc	25860
aggctggctc	ttgaactcct	gggcttaagt	gatctacttg	cctcggcctc	ccaaagtgtt	25920
ggaattacag	gtgagccact	gcacccagcc	tacacagcat	tttaaatgag	tggtctggtg	25980
caacttgtat	catcatgaaa	agatccagag	acctattatg	aggagtaata	aaaggaagtt	26040
gctgcaggat	atgtacagta	tatcatttaa	ataaattttc	cagataagca	aaatatttta	26100
ctttgcttat	atagccacgt	atggtagaac	tgtgaaaatg	tgtctggtaa	tgacacatta	26160
ccagataaat	accaaataca	catgataaat	accaaatggt	gaccatgatc	accactgata	26220
agggtggcag	ggtgatggga	tcaggaagac	aaggggcttc	aactctaagt	gtaatgttta	26280
atttgtcatt	aaaacaaaca	aacaaacaaa	caacatccaa	agaaaacatg	gtcatgtagt	26340
aagatttgac	aaaattgaga	ggtggataca	taaatgttca	taatattatt	ctctatactt	26400
ctctgcatat	ttgtaatatt	tcttacttta	aaaaaaggag	aaatgagatt	ataaaaaaaa	26460
gtcaaccatc	ttcctacata	ccagcgacag	acaatttggt	agtataattt	taaaaatcat	26520
acaatttgca	caatgacaac	aatttgcaca	atgacaagca	accgtggata	aaaatctaga	26580
aatctatata	tatattttt	tctttgagac	agagtctcag	tctgttgccc	aggctggagt	26640
gcagtggcat	gatctcggct	cactgcaacc	tctgcctccc	gggttgaagc	aattctcctg	26700
cctcagcctc	ctgagtagct	aggattacag	gtgcatgcca	ccatgcccgg	ctaattacca	26760
tgcccggcta	atttttttg	tatttttagt	agagacagag	tttcatcatg	ttggtcaggc	26820
tgatctcaaa	ctcttaacct	cgtgatccgc	ctgcctcaac	ctcccaaagt	gctgggatta	26880
caggcatgag	ccaccatgcc	cggccctaga	atcctatttt	ttaaaagcaa	ctaggagtat	26940
atctaagata	tagcatttct	ctgtctgaga	gcagggagag	cttgcatagg	tgtcaatgtc	27000
cttcaaggga	ctcttgaaac	taattcaggg	ccctatacac	tgcaggcatt	tcttggagtg	27060
gccaaggtat	tgtcatgtgt	taagaattct	gagaagttct	cggataatga	aatttgtgca	27120
gctttcttta	attcagcagt	tttcaaacat	ctaacaatag	aatccttctt	gtctgagggg	27180
cctcgcctta	ggaaaggctg	ccctaacaac	ctcaaagttc	ccttccaaca	cccacagtcc	27240
accattctag	tcttggctct	gccactaact	tactgtatga	ctttggccga	atcacctttc	27300
ctcttggggt	ctcagtttgt	taagttatta	acaccctggg	tgacagagca	agaccctgtc	27360
tcaaaaaaaa	aaaacaaaaa	catttccctg	gcaaaaaatt	tatgactaaa	tcctccaaag	27420
caatcgcaac	aaaaccaaaa	attgacaagt	gacacctaat	taaactaaag	agcctctaca	27480

cagcaaaaga	aactatcaac	agagtaaaca	ggcaacctac	agaatgggag	aaaatatttg	27540
cgaactctga	atccaacaaa	ggtctacaag	gaacttagca	attctacaag	gagctagaac	27600
ctacaaggaa	cttaaacaat	tcaacaagca	aaaaacaaag	aaccccaaca	aaaagtggat	27660
agagcacatg	aacagacact	tctcaaaaga	agatgtacaa	geggeeaaca	aagatgaaaa	27720
aatgttcaac	atcactaatc	atcagagaaa	tgcaaatgaa	atcgtgagat	accatctcac	27780
actagtcaaa	atgattatta	agtttctttt	tttgtcccca	cccttgatat	ctgaagaatg	27840
gctgtcatta	aaaagtcaaa	aaaataacag	atgttggcaa	ggctgtggaa	aaaagggaac	27900
acttatacac	tgttggtggg	aatataaatt	agttcagcca	ctgtggaaag	ctatttggag	27960
atttctcaaa	gaacttaaaa	cagaaccacc	attcaattta	gcaatttcat	gatttggtat	28020
ataaccaaag	gaaaatgaat	tcttctacca	aaaagacaca	tgcacttata	tgttctacac	28080
agcactattc	acaatagaaa	gacatcagcc	aagcacagtg	gctcacgcct	gtaatcctag	28140
cactttggga	ggccgaggcg	ggcggatcac	ctgaggtcag	gagttcgaga	ccaacctggc	28200
taacatggta	aaactgtgtc	tctactaaaa	atacaaaaat	tagccaggca	tggtggcaca	28260
tgcctgtaat	cccagctact	tgggaggctg	agacaggaga	atggcttgaa	cctgggaggc	28320
agaggttgca	gtgagctgag	attgcgccac	tgcactccag	cctgggtgac	agagtgagac	28380
tccatctcaa	acaaaacaaa	acagtagaaa	gacatggaat	caacctaagt	gcccatcagc	28440
agtggaatgg	ataatgaaaa	tgtggtacat	atacactatg	gaatagtatg	cagccataaa	28500
agggaacaaa	acctcaacca	agttcaagga	cagtgtcaaa	aaaataaaaa	agggaacaaa	28560
gtcgtgtcct	ttgccacacc	aggaatggag	ctggaggacc	tcatcctaag	tgaatcaaca	28620
cagaaacaaa	aaaacaaata	ctgcatgttc	tcacttgtaa	aaggaagcta	aacattgggt	28680
acacgttgac	atcaagagag	gaacaataga	cgctgcggac	ttctagagga	agggcaaggg	28740
ctaaaaaact	ctctgttggg	tactatgctc	actacttggg	tgatgagctc	aatcatagcc	28800
taaacttcag	tgtcacacaa	tatacccatg	taacaaacct	gtacatgtac	cccctgaatc	28860
taaaataaaa	gtttaattaa	ggcctggtgc	agtggctcac	acctgtaatc	ccagcagttt	28920
gggaggctga	ggtaggtgga	tcaccagagg	tcaggagttc	gagatcaggc	tggccaacat	28980
ggtgaaaccc	cacctctact	aaaaatacaa	aaagaagcca	ggcatggtgg	tgcgtgcctg	29040
tagttccagc	tactcaggag	gctgaggcag	gagaattgct	tgaacccagg	aggcggaggt	29100
tgcagtgagc	cgagatcatg	ccattattct	agcctgggca	atggagcaag	actgtctctg	29160
aaaaaactaa	aaagtttaat	ttaaaaaaaa	aagggtgtgt	atagtttgat	ctcttacctt	29220
ttcccagcca	taacacctca	tgttggaccc	cacgtttagg	ggtttattag	gggcttttta	29280
ggggtttggt	tttatttctc	ctcccccagt	taactgtttc	ttacttaact	aaagcaggtt	29340
catggtagag	gaattacaaa	aatgcagaga	aggatgatta	aaaaagaatt	aaactaggct	29400
gggtgtggtg	gctaacacct	gtaatcccag	tgctttggga	ggctgagttg	gaaggatcat	29460
ttcaggctag	gagtttgaga	ccagcctggg	caacacagta	agaccccatc	tctacagaaa	29520
attttaaaac	ttaaaaaaat	taaaaagtaa	acgttagaca	ggcatggtgg	tgtgtgtctg	29580
tagtcccagc	tacttgtgag	gcttaggcga	gaggatggct	tgagcccagg	aatttgaggc	29640
tgtagtgggt	tttgactatg	ccactgcact	ccagcccggg	tgacacagca	aaaccctatc	29700
	aaatcagatt					29760
	agcctttatg					29820
	gtcaagtcta					29880
- 344909944	Jeeungeeta		Laccedadag		- 349946649	1,000

•				
agagataaag tcacctgtcc aaggtcatac	tgtggatgta	gctctaaccc	aagccctccc	29940
gactgcagca caaattctca gccactacco	tattagcccc	ttcatttgaa	ggtgtcttca	30000
tca				30003
<210> SEQ ID NO 9 <211> LENGTH: 486 <212> TYPE: DNA <213> ORGANISM: Homo sapiens				
<400> SEQUENCE: 9				
ggactgaagg acagagagaa attgcatgc	tggagtctca	ctgctagtac	atagaggtgt	60
tatcttcctt tcatctaaca tatttattga	a gcacctacta	tgtaccaggc	cttgtgctag	120
actctgggga tatggaaatg agcaaagtag	g atgtaccccc	gaaacttgtg	gactaatgga	180
ggagacggac cttaatcaga tcgtcattca	a aagatactat	tacaaactgt	tctgagagcc	240
gaggaagcag gaaggagctg tgagagactg	g agctctaacc	ttggccatca	aagacaagct	300
gtgcagctct ggttttttga gggcaggaca	a tggagggtca	ggcccagctg	gaggcgcacc	360
aaagcccaga gaaaattcag aaccacgtga	a acttgttgga	tttcagcccc	ttgaagcaca	420
tgttgctatt gcagctgcct tgataactg	g ggggacagga	ggagcacggc	tttcccatct	480
tgtacg				486
<210> SEQ ID NO 10 <211> LENGTH: 494 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 10				
gtggtgcgcg ccgtggtgcg cgccgtggtg	g geegetgeeg	atgagcgcct	ccaccgcgtc	60
ctcgggcgtc aggttgagcg cctcggggtt	gaggtgatgc	tggtagccgc	tcatccagta	120
cagatectee agegeegget teecegaggt	geceeegaeg	gcgccggggc	ccccgctcgg	180
cggcccgggg gcgccccgg cctgagacga	a geegeegeeg	ttttccgcgc	cgccgccgcc	240
geeggtgeee gggetgggeg egeagaaget	gggcgaggag	ggcacggagg	agcagggcgt	300
getgagegge gtegaggaea gegageetgg	g cggcaggcgg	tggcagaagc	gctcggcctc	360
gggaggetee ttetteacet egaactteat	caggtcgaag	tcgttgacgt	actcgatggc	420
cagegggetg etgggeaget eggegeeeat	cgccagctcc	gcgggcatcg	cccggggccc	480
gegeeeggee gege				494
<210> SEQ ID NO 11 <211> LENGTH: 1992 <212> TYPE: DNA <213> ORGANISM: Homo sapiens				
<400> SEQUENCE: 11				
cggctcccgg ctccgggaaa gaccttctgt	tetetgeegg	cgcggagggc	cgcaggaacc	60
aggeeteteg eeteceeace agetaggeaq	g ggagcgccca	tctcctgaaa	aattacttcc	120
tgggaagcgg tgcggggaga cagcttcaat	tgettteggt	tggtgaaaaa	cgaattcgct	180
teteagattg eteteetage tgeeaggete	tgacgttgag	aggccggctt	tcagcctcgc	240
gctggacctt ccacaagtgt ttgcacatga	a cctggaagac	agtcagaggc	agaagtccct	300
gcaaatgctc ctggctactt cctgcaggca	a gctcatgctg	ctgcagcaga	agactttcct	360

-continued

-concinued	
atgtctagct gccagtattc tgggtgctgg gggcatcctg ttcctaggat cacagccatg	420
gtggtatgtt ctagaactca gaaatttacc aaatcactgg atggaccaga ggagtgagct	480
ccaggttggg tttccagaag ggactcccag aactcttcca ccatacaggc ctctcaggga	540
gctgctccct ctgccatggt cagtgagagg gggaagcagg agccgccatt ggggttgttg	600
agttcgtggc tgcaacccag ggatgaggaa gctgctgcta cacacccatg aagctgatgc	660
ctggacataa atccctactg ataagtgttt acgacatttc cagcgtggtg ccgacactgc	720
atggaaatgc tgcatggaaa gtccttatac atctatcttt gtgcatttat tgtgagcacc	780
tactatgagt aaaacctggg ctggtggctg gagaaacatg aagatgagta agagccaatt	840
cctgttcttg gggatttaat aatatattca agggaaaaga cacaaaataa ccatttccag	900
gtaaactctg gtggggaggg tgggaggaga accgtggttt gcttttgtgc ccaacacttc	960
acatteetta eetetttete eecacegaga eettgaggag eageetgage eagaggacea	1020
gcatceteat etteteteea eetettaeta ggggggtgge tttgggeeag tttettaeat	1080
tetttgggee aetttagttt eettattgaa aaatggggat aataatagtg getacatete	1140
agtgtgattc tgaggaaacc agaattgtac atgcagagca catgcacaga acagtgcctg	1200
gcacagtcag taattgatca atgtgcgcta ttgttgttgt gtatattagt tctcccctga	1260
tacagatgag agctatctct aactcagaga cttgccacat cattaaatta ggagtgagaa	1320
ctgagcctgg ataaggaaga ggaacaggaa ttcaacacag tgaacacagc aggaaaggct	1380
tgtgcgaagg ctctgggctg gagatgtgta aagcatgtct ggagatgggg aaggtccatt	1440
gggccaggaa accacagget etgeteteet ggagcagaag cacagegaaa teacageega	1500
gcagaggagg gcaagggaga gggccgcccc agtctgagag ctgcagggtc tggctggaac	1560
tgeteeegge cageggaett caecegggeg egggggeege acetgeeggg egeggeetge	1620
tetatggege cetetgetgt tagteegeee eaggeteege geeggeetet eetgggteeg	1680
tggggcctgc gggctgcggg gatcaccgag acccacattc ccgtggccag cagcctttcg	1740
ctctgctcag aggagaggca gaagggcata ttgctgtttc ccagtcgctt tttacacctg	1800
cettettegg ataaacccaa aaatetteet teagagaaga eggeeegtat tteeegttat	1860
ttgggggtgg aggtggggct aagggcgtca tagggagagc cttactttca acattctgca	1920
ttatgaaacc aagggagact ttttttccca acaagtgtga acattttttt tcaagagaat	1980
taaatcgttt at	1992
<210> SEQ ID NO 12 <211> LENGTH: 1767 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 12	
gggttgaact gcgggctgga gaaggaaaac cctttgacaa ttttgagaat tcagcatgtt	60
aaagtaacac accattggaa ggtggtcgct acagcaaatt tggatgagat cattaattac	120
aattttaatg agcagaaaac agaaataaac gcaataaatg gctcaagaat aaaatttgat	180
cagcaccacc gacggatgga gtttagctat tggtgtcaaa gcgctcattt gggtccaagc	240
acgaaaagcc aggagggcgt actccgcttc gataaccttc gtttactaag cactagtttt	300
taagggtcag cttgagtttg agtctgaaac tgggggaagg aagggttata tttgccagtt	360
ttatttcctt ctaagataga agcaatgtta tttggtcctc ctcttccttt atctttcttc	420

attaacttca agactggttt aaatctatta tttcatggac tttagaatct gacctggggt

-continued

aaggtgaagt cct	togtoag catgaatagt	gctaaggagt	caagccaaga	cttgcttcag	540		
aagagagctg atg	tgcggac cttctgcatt	tccacgcggg	gatccagtgc	ttgggtctaa	600		
accccagcgc cct	gccacct cggccaggaa	gctgcgggag	gatggtggca	ggcatagccc	660		
gtcctagcct tga	aactggg gggcctatgt	ctctggcttc	gttacaaacg	aaacgtttct	720		
cgccttcgga cac	tccaccc tggcggtggt	acccaacctt	cagtetecae	tetgegeetg	780		
gecetecage gad	ctcctca catcctccag	gacactgcat	tctcaaggac	taggtaggaa	840		
ttgggaggaa aag	aggccag tcatccccaa	agattccaat	gttaaagagt	gatccccttt	900		
ttatctcatg taa	atattat gactcggaag	agagttgaat	atttccctat	tgagaatgtt	960		
agtatctact att	ggaggcg gggttgccaa	agagagacac	gggggtgggg	gagagattga	1020		
gactgagatt caa	ctcaatc caactcaggg	tgaactgtct	tgagtaaata	gttgcaacgc	1080		
ttggtgtaag gat	gteteca tegtteaett	ttacgtatca	tttgcattgc	caaattaaaa	1140		
tggcagcatt gtt	cttaatt atgacaataa	aaaattccgg	atccgtgtac	cttgatccct	1200		
ggtagtgagg ggg	tgagece egggtgeteg	atcccgcgta	gagcagcgtg	tattgcagac	1260		
gcacgctggg cag	cacggga aggcaggccg	gtgcctcctg	ccaggtgcta	gttgtagtgg	1320		
atctgctgcc tgt	ctacage tgggageggt	gacaacgatg	gagcgtcctc	ggagagggtg	1380		
ggctgccccc tgt	cactece gggggaagat	cgccctgccc	tccgctctaa	ctgcgtggtt	1440		
gaaaccagtt tcg	ggacccg agtcctggtc	ccgctgacgc	gggaggcttg	tttctggtgg	1500		
ggcagtctta acc	cattgcc ttcagatgcc	tttgagagtc	aggacttgct	ctttcttggg	1560		
gateeteega aac	cagcatg cetteetgee	cacgacctaa	taaagtggga	ctttttcaag	1620		
taccccttgg gag	tggacgt gtaacacgtg	gtcgcaagga	teceggegea	tctctacgca	1680		
gtatatctaa tgo	ıggatggg ggggetetgt	ttgaaagcaa	atgatttgca	ttttaattga	1740		
aaaataaatg aaa	geggttt ggeaaat				1767		
<210> SEQ ID NO 13 <211> LENGTH: 19 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Antisense oligonucleotide							
<400> SEQUENCE					10		
tcctctctcc caa	CCGaGC				19		
<220> FEATURE:	20 IA I: Artificial Seque		leotide				
<400> SEQUENCE	: 14						
tgtctcggct ctc	cactcct				20		
<220> FEATURE:	21 IA I: Artificial Seque		leotide				

<400> SEQUENCE: 15

catteettee acaattegee t	21
<210> SEQ ID NO 16	
<211> LENGTH: 19	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Antisense oligonucleotide	
-400 CEOHENCE, 16	
<400> SEQUENCE: 16	
gttcctcccg tgcctttag	19
<u> </u>	
<210> SEQ ID NO 17	
<211> LENGTH: 21	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Antisense oligonucleotide	
<400> SEQUENCE: 17	
C4007 SEQUENCE: 17	
acctatagta cacgeceage a	21
<210> SEQ ID NO 18	
<211> LENGTH: 20	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Antisense oligonucleotide	
<400> SEQUENCE: 18	
1900 DEGOENCE. 10	
gettetgeee aggtgtgaea	20
55 "55-5-5"-"	
<210> SEQ ID NO 19	
<211> LENGTH: 19	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Antisense oligonucleotide	
<400> SEQUENCE: 19	
C4007 BEGOENCE. 19	
cagcaagtgt cagatccca	19
<210> SEQ ID NO 20	
<211> LENGTH: 21	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Antisense oligonucleotide	
<400> SEQUENCE: 20	
agtgtcagat cccagctcca g	21
<210> SEQ ID NO 21	
<211> LENGTH: 21	
<212> TYPE: DNA	
<213 > ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Antisense oligonucleotide	
400 GROUPIGE 01	
<400> SEQUENCE: 21	
aggetttagt gogtgattag a	2.1
ggagtttggt cagtggttgg g	21
<210> SEQ ID NO 22	
<210> SEQ 1D NO 22 <211> LENGTH: 20	
<211> HENGTH: 20 <212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	

-concinued		
<pre><220> FEATURE: <223> OTHER INFORMATION: Antisense oligonucleotide</pre>		_
<400> SEQUENCE: 22		
gtgtcagatc ccagctccag	20	
<210> SEQ ID NO 23 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Antisense oligonucleotide		
<400> SEQUENCE: 23	21	
ctcgttacct cttgtcctgg g	21	
<pre><210> SEQ ID NO 24 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Antisense oligonucleotide</pre>		
<pre><400> SEQUENCE: 24 agtcgggagg gcttgggtta</pre>	20	
agicgggagg gerigggera	20	
<210> SEQ ID NO 25 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Antisense oligonucleotide		
<400> SEQUENCE: 25		
ccctgcttcc ttctgtgtct	20	
<210> SEQ ID NO 26 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Antisense oligonucleotide		
<400> SEQUENCE: 26		
gecaecetge tteettetgt	20	
<210> SEQ ID NO 27 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Antisense oligonucleotide		
<400> SEQUENCE: 27		
tcctgcttcc tcggctctca	20	
<210> SEQ ID NO 28 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Antisense oligonucleotide		
<400> SEQUENCE: 28		
cctccatgtc ctgccctcaa	20	

```
<210> SEQ ID NO 29
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense oligonucleotide
<400> SEQUENCE: 29
teegteteet ceattagtee a
                                                                       21
<210> SEQ ID NO 30
<211> LENGTH: 20
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense oligonucleotide
<400> SEQUENCE: 30
                                                                       20
teegteteet ceattagtee
<210> SEQ ID NO 31
<211> LENGTH: 21
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense oligonucleotide
<400> SEQUENCE: 31
                                                                       21
gtccgtctcc tccattagtc c
<210> SEQ ID NO 32
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense oligonucleotide
<400> SEQUENCE: 32
ctaccagcat cacctcaacc c
                                                                       21
<210> SEQ ID NO 33
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense oligonucleotide
<400> SEQUENCE: 33
agttcgaggt gaagaaggag c
                                                                       21
<210> SEQ ID NO 34
<211> LENGTH: 21
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense oligonucleotide
<400> SEQUENCE: 34
                                                                       21
cgctggagga tctgtactgg a
<210> SEQ ID NO 35
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense oligonucleotide
```

<400> SEQUENCE: 35	
cctgatgaag ttcgaggtga	20
<210> SEQ ID NO 36 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Antisense oligonucleotide	
<400> SEQUENCE: 36	
gtacgtcaac gacttcgacc t	21
<210> SEQ ID NO 37 <211> LENGTH: 19 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Antisense oligonucleotide	
<400> SEQUENCE: 37	
gcaattgaag ctgtctccc	19
<210> SEQ ID NO 38 <211> LENGTH: 19 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Antisense oligonucleotide	
<400> SEQUENCE: 38	
cggcagagaa cagaaggtc	19
<210> SEQ ID NO 39 <211> LENGTH: 19 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Antisense oligonucleotide	
<400> SEQUENCE: 39	
tttcaggaga tgggcgctc	19
<210> SEQ ID NO 40 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Antisense oligonucleotide	
<400> SEQUENCE: 40	
ggagagcaat ctgagaagcg a	21
<210> SEQ ID NO 41 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Antisense oligonucleotide <400> SEQUENCE: 41	
gcctctcaac gtcagagcct	20
<210> SEQ ID NO 42	

-continued

```
<211> LENGTH: 20
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense oligonucleotide
<400> SEQUENCE: 42
tctcagtctc aatctctccc
                                                                         20
<210> SEQ ID NO 43
<211> LENGTH: 21
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE
<223> OTHER INFORMATION: Antisense oligonucleotide
<400> SEOUENCE: 43
gttacacgtc cactcccaag g
                                                                         21
<210> SEQ ID NO 44
<211> LENGTH: 20
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense oligonucleotide
<400> SEOUENCE: 44
                                                                         20
gctatgcctg ccaccatcct
<210> SEQ ID NO 45
<211> LENGTH · 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense oligonucleotide
<400> SEOUENCE: 45
tttcctccca attcctacct
                                                                        20
```

What is claimed is:

1. A method of modulating a function of and/or the expression of a Pancreatic Developmental gene polynucleotide in patient cells or tissues in vivo or in vitro comprising:

contacting said cells or tissues with at least one antisense oligonucleotide 5 to 30 nucleotides in length wherein said at least one oligonucleotide has at least 50% sequence identity to a reverse complement of a polynucleotide comprising 5 to 30 consecutive nucleotides within nucleotides 1 to 1235 of SEQ ID SEQ ID NO: 6, 1 to 17,964 of SEQ ID NO: 7, 1 to 1 to 50,003 of SEQ ID SEQ ID NO: 8, 1 to 486 of SEQ ID NO: 9, 1 to 494 of SEQ ID NO: 10, 1 to 1992 of SEQ ID NO: 11, or 1 to 1767 of SEQ ID NO: 12; thereby modulating a function of and/or the expression of the Pancreatic Developmental gene polynucleotide in patient cells or tissues in vivo or in vitro.

2. A method of modulating a function of and/or the expression of a Pancreatic Developmental gene polynucleotide in 60 patient cells or tissues in vivo or in vitro comprising:

contacting said cells or tissues with at least one antisense oligonucleotide 5 to 30 nucleotides in length wherein said as least one oligonucleotide has at least 50% sequence identity to a reverse complement of a natural 65 antisense of a Pancreatic Developmental gene polynucleotide; thereby modulating a function of and/or the

expression of the Pancreatic Developmental gene polynucleotide in patient cells or tissues in vivo or in vitro.

3. A method of modulating a function of and/or the expression of a Pancreatic Developmental gene polynucleotide in patient cells or tissues in vivo or in vitro comprising:

contacting said cells or tissues with at least one antisense oligonucleotide 5 to 30 nucleotides in length wherein said oligonucleotide has at least 50% sequence identity to an antisense oligonucleotide to the Pancreatic Developmental gene polynucleotide; thereby modulating a function of and/or the expression of the Pancreatic Developmental gene polynucleotide in patient cells or tissues in vivo or in vitro.

4. A method of modulating a function of and/or the expression of a Pancreatic Developmental gene polynucleotide in patient cells or tissues in vivo or in vitro comprising:

contacting said cells or tissues with at least one antisense oligonucleotide that targets a region of a natural antisense oligonucleotide of the Pancreatic Developmental gene polynucleotide; thereby modulating a function of and/or the expression of the Pancreatic Developmental gene polynucleotide in patient cells or tissues in vivo or in vitro.

5. The method of claim 4, wherein a function of and/or the expression of the Pancreatic Developmental gene is increased in vivo or in vitro with respect to a control.

40

- **6**. The method of claim **4**, wherein the at least one antisense oligonucleotide targets a natural antisense sequence of a Pancreatic Developmental gene polynucleotide.
- 7. The method of claim 4, wherein the at least one antisense oligonucleotide targets a nucleic acid sequence comprising coding and/or non-coding nucleic acid sequences of a Pancreatic Developmental gene polynucleotide.
- **8**. The method of claim **4**, wherein the at least one antisense oligonucleotide targets overlapping and/or non-overlapping sequences of a Pancreatic Developmental gene polynucle- 10 otide.
- 9. The method of claim 4, wherein the at least one antisense oligonucleotide comprises one or more modifications selected from: at least one modified sugar moiety, at least one modified internucleoside linkage, at least one modified nucleotide, and combinations thereof.
- 10. The method of claim 9, wherein the one or more modifications comprise at least one modified sugar moiety selected from: a 2'-O-methoxyethyl modified sugar moiety, a 2'-methoxy modified sugar moiety, a 2'-O-alkyl modified sugar moiety, a bicyclic sugar moiety, and combinations thereof.
- 11. The method of claim 9, wherein the one or more modifications comprise at least one modified internucleoside linkage selected from: a phosphorothioate, 2-Omethoxyethyl (MOE), 2'-fluoro, alkylphosphonate, phosphorodithioate, 25 alkylphosphonothioate, phosphoramidate, carbamate, carbonate, phosphate triester, acetamidate, carboxymethyl ester, and combinations thereof.
- 12. The method of claim 9, wherein the one or more modifications comprise at least one modified nucleotide selected ³⁰ from: a peptide nucleic acid (PNA), a locked nucleic acid (LNA), an arabino-nucleic acid (FANA), an analogue, a derivative, and combinations thereof.
- 13. The method of claim 1, wherein the at least one oligonucleotide comprises at least one oligonucleotide sequences 35 set forth as SEQ ID NOS: 13 to 45.
- **14.** A method of modulating a function of and/or the expression of a Pancreatic Developmental gene in mammalian cells or tissues in vivo or in vitro comprising:
 - contacting said cells or tissues with at least one short interfering RNA (siRNA) oligonucleotide 5 to 30 nucleotides in length, said at least one siRNA oligonucleotide being specific for an antisense polynucleotide of a Pancreatic Developmental gene polynucleotide, wherein said at least one siRNA oligonucleotide has at least 50% sequence identity to a complementary sequence of at least about five consecutive nucleic acids of the antisense and/or sense nucleic acid molecule of the Pancreatic Developmental gene polynucleotide; and, modulating a function of and/or the expression of a Pancreatic Developmental gene in mammalian cells or tissues in vivo or in vitro.
- 15. The method of claim 14, wherein said oligonucleotide has at least 80% sequence identity to a sequence of at least about five consecutive nucleic acids that is complementary to the antisense and/or sense nucleic acid molecule of the Pancreatic Developmental gene polynucleotide.
- **16**. A method of modulating a function of and/or the expression of a Pancreatic Developmental gene in mammalian cells or tissues in vivo or in vitro comprising:
 - contacting said cells or tissues with at least one antisense oligonucleotide of about 5 to 30 nucleotides in length specific for noncoding and/or coding sequences of a sense and/or natural antisense strand of a Pancreatic Developmental gene polynucleotide wherein said at least one antisense oligonucleotide has at least 50% 65 sequence identity to at least one nucleic acid sequence set forth as SEQ ID NOS: 1 to 12; and,

126

- modulating the function and/or expression of the Pancreatic Developmental gene in mammalian cells or tissues in vivo or in vitro.
- 17. A synthetic, modified oligonucleotide of 10 to 22 nucleotidesin length comprising at least one modification wherein the at least one modification is selected from: at least one modified sugar moiety; at least one modified internucleotide linkage; at least one modified nucleotide, and combinations thereof; wherein said oligonucleotide is an antisense compound which hybridizes to a natural antisenses polynucheotide of a Pancreatic gene and upregulates the function and/or expression of a Pancreatic Developmental gene in vivo or in vitro as compared to a normal control.
- 18. The oligonucleotide of claim 17, wherein the at least one modification comprises an internucleotide linkage selected from the group consisting of: phosphorothioate, alkylphosphonate, phosphorodithioate, alkylphosphonothioate, phosphoramidate, carbamate, carbonate, phosphate triester, acetamidate, carboxymethyl ester, and combinations thereof
- 19. The oligonucleotide of claim 17, wherein said oligonucleotide comprises at least one phosphorothioate internucleotide linkage.
- **20**. The oligonucleotide of claim **17**, wherein said oligonucleotide comprises a backbone of phosphorothioate internucleotide linkages.
- 21. The oligonucleotide of claim 17, wherein the oligonucleotide comprises at least one modified nucleotide, said modified nucleotide selected from: a peptide nucleic acid, a locked nucleic acid (LNA), analogue, derivative, and a combination thereof.
- 22. The oligonucleotide of claim 17, wherein the oligonucleotide comprises a plurality of modifications, wherein said modifications comprise modified nucleotides selected from: phosphorothioate, alkylphosphonate, phosphorodithioate, alkylphosphonothioate, phosphoramidate, carbamate, carbonate, phosphate triester, acetamidate, carboxymethyl ester, and a combination thereof.
- 23. The oligonucleotide of claim 17, wherein the oligonucleotide comprises a plurality of modifications, wherein said modifications comprise modified nucleotides selected from: peptide nucleic acids, locked nucleic acids (LNA), analogues, derivatives, and a combination thereof.
- 24. The oligonucleotide of claim 17, wherein the oligonucleotide comprises at least one modified sugar moiety selected from, a 2'-O-methoxyethyl modified sugar moiety, a 2'-methoxy modified sugar moiety, a 2'-O-alkyl modified sugar moiety, a bicyclic sugar moiety, and a combination thereof.
- 25. The oligonucleotide of claim 17, wherein the oligonucleotide comprises a plurality of modifications, wherein said modifications comprise modified sugar moieties selected from: a 2'-O-methoxyethyl modified sugar moiety, a 2'-methoxy modified sugar moiety, a 2'-O-alkyl modified sugar moiety, a bicyclic sugar moiety, and a combination thereof.
- 26. The oligonucleotide of claim 17, wherein the oligonucleotide is of at least about 12 to 21 nucleotides in length and hybridizes to a natural antisense strand of a Pancreatic Developmental gene polynucleotide wherein said oligonucleotide has at least about 80% sequence identity to a sequence of at least about 12 consecutive nucleic acids of the sense coding and/or noncoding nucleic acid sequences of the Pancreatic Developmental gene polynucleotide.
- 27. The oligonucleotide of claim 26, wherein the oligonucleotide has at least about 90% sequence identity to a sequence of at least about 12 consecutive nucleic acids of sense coding and/or noncoding nucleic acid sequence of the Pancreatic Developmental gene polynucleotide and wherein said Pancreatic Development gene is selected from HNF4A SEQ ID NO: 2.

- **28**. The oligonucleotide of claim **17**, wherein said oligonucleotide hybridizes to a natural antisense polynucleotide selected from SEQ ID NOS: 7, 8 or 9 and upregulates expression and/or function of at least one Pancreatic Developmental gene polynucleotide in vivo or in vitro, as compared to a 5 normal control.
- **29**. The oligonucleotide of claim **17**, wherein the oligonucleotide comprises the sequences set forth as SEQ ID NOS: 13 to 45.
- **30**. A composition comprising one or more oligonucle- 10 otides according to claim **17** and a pharmaceutically acceptable excipient.
- **31**. The composition of claim **30**, wherein the oligonucleotides have at least about 80% sequence identity as compared to any one of the nucleotide sequences set forth as SEQ ID 15 NOS: 13 to 45.
- **32**. The composition of claim **30**, wherein the oligonucleotides comprise nucleotide sequences set forth as SEQ ID NOS: 13 to 45.
- **33**. The composition of claim **32**, wherein the oligonucle- 20 otides set forth as SEQ ID NOS: 13 to 45 comprise one or more modifications or substitutions.
- **34**. The composition of claim **33**, wherein the one or more modifications are selected from: phosphorothioate, methylphosphonate, peptide nucleic acid, locked nucleic acid 25 (LNA) molecules, and combinations thereof.

* * * * *